教案模板

5U文学网 > 实用文 > 教学资料 > 教案模板 > 数学教学设计活动教案

数学教学设计活动教案

| 发昌

教案的编写,是用来辅助上课的,也就是说,需要根据上课的内容来编写。那么,大家知道正规的教案是怎么写的吗?下面是由小编给大家带来的数学教学设计活动教案7篇,让我们一起来看看!

数学教学设计活动教案篇1

教学目标:

1、情感目标:激发学生的表达欲望,培养学生善于探索的精神。渗透爱国主义教育,树立民族自豪感。

2、知识目标:通过演示和对简易天平的实际操作,观察,探索等式的基本性质、从等式出发初步理解方程的意义,会判断是不是方程。

3、能力目标:通过简单的天平实验理解并掌握等式的基本性质。结合教学内容,培养概括、推理的能力。

教学重点:

建立方程的概念。

教学难点:

帮助学生建立“方程”的概念,并会应用

教具准备:

天平、空水杯、水(可根据实际变换为其它实物)

教学过程:

一、导入新课:今天我们上课要用到一种重要的称量工具,它是什么呢?对,它是天平。同学们对天平有哪些了解呢?天平由天平称与砝码组成,当放在两端托盘的物体的质量相等时,天平就会平衡,根据这个原理,从而称出物体的质量。

二、新知学习

1、实物演示,引出方程。

操作天平:第一步,称出一只空杯子重100克,板书:1只空杯子=100克;

数学教学设计活动教案篇2

课题:二元一次方程

一、教学目标:

1.理解二元一次方程及二元一次方程的解的概念;

2、学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3、学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育.

二、教学重点、难点:

重点:二元一次方程的意义及二元一次方程的解的概念.

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程.

三、教学方法与教学手段:

通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点.

四、教学过程:

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,

得到方程:80a+150b=902880.

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

做一做:

(1)根据题意列出方程:

①小明去看望奶奶,买了5kg苹果和3kg梨共花去23元,分别求苹果和梨的单价.设苹果的单价x元/kg,梨的单价y元/kg;

②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:

(2)课本P80练习2.判定哪些式子是二元一次方程方程.

合作学习:

活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动.

问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人。

团支书拟安排8个劳动组,2个文艺组,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等.得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解.

并提出注意二元一次方程解的书写方法.

试一试:

检验下列各组数是不是方程2x=y+1的解:

②③是方程的解,每个学生再找出方程的一个解,引导学生得到结论:一般情况下,二元一次方程有无数个解.

3.合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换.(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法.提问:给出x的值,计算y的值时,y的系数为多少时,计算y最为简便?

出示例题:已知二元一次方程x+2y=8.

(1)用关于y的代数式表示x;

(2)用关于x的代数式表示y;

(3)求当x=2,0,-3时,对应的y的值,并写出方程x+2y=8的三个解.

(当用含x的一次式来表示y后,再请同学做游戏,让同学体会一下计算的速度是否要快)

4.课堂练习:

(1)已知:5xm-2yn=4是二元一次方程,则m+n=;

(2)二元一次方程2x-y=3中,方程可变形为y=当x=2时,y=;

5.你能解决吗?

小红到邮局给远在农村的爷爷寄挂号信,需要邮资3元8角.小红有票额为6角和8角的邮票若干张,问各需要多少张这两种面额的邮票?说说你的方案.

6.课堂小结:

(1)二元一次方程的意义及二元一次方程的解的概念(注意书写格式);

(2)二元一次方程解的不定性和相关性;

(3)会把二元一次方程化为用一个未知数的代数式表示另一个未知数的形式.

7.布置作业:(1)教材P82;(2)作业本.

教学设计意图:

依照课程标准,通过分析教材中教学情境设计和例习题安排的意图,在此基础上依据学生实际,制订了本堂课的教学目标,教学重点和难点,课堂教学的设计始终围绕这教学重点和难点展开.

在充分理解教材编写意图、教学要求和教学理念的基础上,根据学生实际,从学生的已有经验出发,创设了教学情境:关心老人,突出情感主线,并贯穿整个教学.并对教学

内容进行适当的重组、补充和加工等,创造性地使用了教材.所选择的例习题都体现实际问题数学化的思想,让学生感受到数学的魅力.这两个方面的设计贯穿整堂课,把知识内容和情感体验自然连贯起来.

其次,在教学过程设计中,体现了让学生展示解决问题的思维过程,通过几个合作学习,激发学生主动去接触问题,从而达到解决问题的目的.重视学生学习过程中的自我评价和生生间的相互评价,关注学生对解题思路回顾能力的培养.

二元一次方程概念的教学中,通过与一元一次方程的类比的方法,使得学生加深印象.在突破难点的设计上,通过游戏的形式激发学生的学习兴趣,并在选题时,通过降低例题的难度,使学生迅速掌握用关于一个未知数的代数式表示另一个字母的方法,体会运用这种方法的可使求二元一次方程求解更简便.

数学教学设计活动教案篇3

一、教学设计的反思

教师设计教学方案,要坚持“以学定教”的精神,设计教案时,要预测学生遇到的问题,那些地方学生不容易理解,根据学生要遇到的问题,设计出解决这些问题的策略和方法,因此,教师在备课时,先要对过去的教学经验进行反思,反思自己或他人以前在讲授这一教学内容时曾遇到过那些问题,有那些经验,应该采用什么策略和方法解决的,效果如何?然后进行新的教学设计。

在设计新的教案时,要根据自己所教班级学生的实际情况,在学习这一内容时,可能会遇到那些新问题,针对出现的这些新问题,可采取那些策略和方法。

例如:在教学“有余数的除法”一课时,根据以往经验,学生对“余数都比除数小”这一规律不够理解,出现余数比除数大的现象,在教学设计时,为加深学生的理解,突破这一教学难点,我让学生分小组合作学习,动手操作,进行分铅笔试验,并引导学生观察、比较、讨论,最后让学生在操作实验中自己得到了“余数都比除数小”这一规律。

二、课堂教学反思

再好的教学总有它不足的地方,总有须待进一步改进,进一步优化的地方,在教学过程中,要根据教学效果反馈信息不断地反思,反思解决课堂教学中出现的问题,根据出现的问题,及时反思自己的教学行为,调整教学策略,只有这样,才能更好地把握教材,设计出一套以学生为中心,培养学生发散思维能力、创新能力,不断完善教学方法,顺应学生的发展需要。

在学生学习过程中出现思维障碍时,教师应及时反思,如何启发引领学生克服思维障碍,当学生发生意外事情时,教师及时进行反思,如何机智地处理发生的意外,使学生及时恢复到正常的思维状态。

例如在教学“梯形面积”时,有这样一道题:一梯形上底是3米,下底是5米,高是2米,求梯形的面积。在解答此题时,有一学生列式为:3+5=8(平方米),当学生都笑他错误时,他却理直气壮地说:“梯形的高是2米,可计算面积时,公式又要除以2,乘以2再除以2,可以相互抵消,所以只要把梯形的上底和下底加起来就行了。”听他这么一说,感觉还有道理,此时我顺势引导:“是不是所有梯形都可以用这样的方法呢?”学生展开讨论,分析得出:如果梯形的高不是2米,就不能用这个方法了。

教学中,常常会出现类似这些我们不能预料的问题,我们要及时地反思,启发引导学生克服思维障碍。

三、课后总结的反思

课后反思主要是教师在课后对整个教学行为过程进行反思性回忆,包括对自己的教学观念和教学行为、学生表现、教学的成功与失败等情况进行分析,找出教学程序在具体实施过程中的成功和不足之处,研究产生不足的原因,思考今后改进优化的方向。课后总结反思,一般包括以下三个方面:

1、 反思教学成功之处

每一节课螳都是师生围绕一定的教学目标,按照预先设想的教学方案而进行的教学活动。如各种教学手段的有机结合,巧妙地新课引入,留有悬念的结束语,教学中的亮点,精彩片断,以及教师在课堂上随着教学内容的展示、情境的创设而产生的灵感,与学生产生强烈的共鸣处等,课后进行认真反思,记录下来,为今后教学提供参考。

2、 反思教学失败之处

再完美的教学设计也可能有疏漏、失误之处,把这些课堂教学中的失败教训,如对教材理解出现的偏差,对教学重点、难点处理不当,演示、实验有达不到预期的效果,由于某种原因,学生的积极性受到挫伤等记录下来,并对其原因作深刻的分析的探究,成为今后教学吸取的教训。

3、 反思学生的反馈

学生是教学的对象,也是教学活动的主体,教师的教学活动是以学生为中心进行的,将学生在学习过程中闪现出智慧的火花,独特见解或是学生的问题,如能力缺陷,思维障碍,以及学生学习中遇到的困难,作业存在的问题等记录下来,便于在以后的教学中,有针对性地实施补救,特别是在课堂上学生提出的一些老师解决不了的奇特问题,记录到课后去研究。

教学反思是教师自我完善自我提高的重要手段,是教师学会如何教学和从教学中学会什么的有效途径,勤反思,也是现代教师在研究状态下进行课堂教学的不可缺少的重要一环,因此,在教学中不断反思提炼,从中发现问题,进行研究,就一定能拉提升我们的创新能力,提升我们的专业素养,提升我们的教学水平。促使自己成长与进步,使自己成为一名反思型、研究型、学者型的教师,成为新时代的教学能手。

数学教学设计活动教案篇4

单元目标:

1、使学生认识圆,掌握圆的特征;理解直径与半径的相互关系;理解圆周率的意义,掌握圆周率的近似值。

2、使学生理解和掌握求圆的周长与面积的计算公式,并能正确地计算圆的周长与面积。

3、独立自学,使学生初步认识弧、圆心角和扇形。

4、使学生认识轴对称图形,知道轴对称的含义,能找出轴对称图形的对称轴。

5、通过介绍圆周率的史料,使学生受到爱国主义教育。

单元重点:

1、认识圆和轴对称图形;

2、掌握圆的周长和面积的计算公式。

单元难点:

理解圆周率“π”;圆面积计算公式的推导以及画具有定半径或直径的圆。

第一课时 认识圆

(1)圆的认识

教学目标:

1、使学生认识圆,掌握圆的特征,理解直径与半径的关系。

2、会使使用工具画圆。

3、培养学生观察、分析、综合、概括及动手操作能力。

教学重点:

圆的认识,通过动手操作,理解直径与半径的关系,认识圆的特征。

教学难点:

画圆的方法,认识圆的特征。

教学准备:

多媒体课件,圆规等。

教学过程:

一、旧知铺垫(课件出示)

1、我们以前学过的平面图行有哪些?这些图形都是用什么线围成的?简单说说这些图形的特征?

长方形 正方形 平行四边形 三角形 梯形

2、 出示圆片图形:

(1)圆是用什么线围成的?(圆是一种曲线图形)

(2)举例:生活中有哪些圆形的物体?

(钟面、车轮、水杯、碗口等)

二、新知探究

(一)认识圆心、直径和半径。

1 、教师课件出示自学提纲。

(1)生拿出准备好的一个圆纸片。

(2)课本第56页动手折一折。

折过2次后,你发现了什么?再折出另外两条折痕呢?

(3)指出纸片的圆心、直径和半径。

2、自学,教师巡回指点,发现难点。

3、教师在黑板上画一个圆,让个别学生上台指出。

4、小组讨论:

(1)什么叫半径?圆上是什么意思?画一画两条半径,量一量它们的长短,发现了什么?

(2)什么叫直径?过圆心是什么意思?量一量手上的圆的直径的长短,你发现了什么?

(3)小结:在同一个圆里,有无数条直径,且所有的直径都相等。

在同一个圆里,有无数条半径,且所有的半径都相等。

5、直径与半径的关系。

(1)学生独立量出自己手中圆的直径与半径的长度,看它们之间有什么关系?然后讨论测量结果,找出直径与半径的关系。

得出结论:在同一个圆里,

(2)58页做一做第一题。

(二)画圆。

1、介绍圆规的各部分名称及使用方法。

2、让个别学生说出老师刚才是如何画圆的。学生自学课本第57页并小结出画圆的步骤和方法。

3、小组内画r=3cm的圆。组长检查评比,然后全班评比。

三、当堂测评

1、判断,并说明理由。(40分)

(1)半径的长短决定圆的大小。

(2)圆心决定圆的位置。

(3)直径是半径的2倍。

(4)圆的半径都相等。

2、画一个半径是2厘米的圆。再画一个直径是5厘米的圆。(30分)

3、思考题:在操场如何画半径是5米的大圆?(30分)

学生独立完成教师巡回查看,发现疑难。

小组内评比,纠错。组长组织解决存在问题

四、谈收获、讲表现。

这节课你学到了什么,对自己的课堂表现还有什么提议吗?觉得在哪些地方还需改进。

数学教学设计活动教案篇5

教学目标:

1、通过具体活动,让学生结合活动内容作实例,感知镜面对称现象

2、通过实际操作,让全体学生经历探索镜面对称现象的一些特征的过程

3、逐步发展学生空间知觉和空间观念

教材分析:

利用镜子进行几个简单而有趣的试验,向学生呈现生活中有趣的镜面对称现象,激发学生们强烈的兴趣和好奇心,发展他们的空间知觉。

学校及学生状况分析:

本校的学生大部分家庭条件不是很好,父母大都没有时间辅导孩子,镜子虽然是学生日常生活中常见的物品,但是他们是否能去认真仔细观察镜子中的学问呢?要以此来引发他们的学习兴趣,带着问题去学习对他们来说会更有趣味。

教学过程:

一、讲故事,导入新课

1、讲《猴子捞月》的故事

师:同学们,今天老师给大家带来一个故事,请你们仔细听,然后看看谁是咱班的故事大王,能把这个故事给大家续讲下去,‘猴子在路边散步,看到天空高挂一轮圆月,猴子走到井边,发现井里也有一轮,猴子以为……’

生:天上的月亮掉到了井里,猴子大喊,同伴扛来长长的网兜。众猴子怎么也捞不出“月亮”。

也许学生还有其它版本的故事,要鼓励学生大胆发言。

师:这是为什么呢?

生:不是月亮掉到井里,而是井水倒映出月亮。

师:在生活中,你们还有没有发现类似的现象?(让学生想一想,说一说,与同伴流。)学生可能知道:

(1)照镜子时,出现的现象

(2)雨过天晴,路里积水中会倒映一些影子

(3)光滑亮丽的地板,也出现倒映

2、揭示课题

师:同学们,这节课我们就来研究一下,这些倒映的影子,看一看“镜子中的数学”。(板书课题:镜子中的数学)

二、组织活动

1、教师示范

(1)在实物投影上放一个大的黑体字——“王”的一半;

(2)把镜子放在虚线上(对称轴上),让全班学生观察镜子里的图形和整个图形。

(3)让学生说一说看到了什么?有什么发现?

A、看到了整个的“王”字

B、镜子里的图形是镜子外的图形的对称图形。

2、试一试

拿出学具袋中的学具——一面小镜子,做一下第(1)题

(1)让学生把镜子放在虚线上,看看镜子里的图形和整个图形

(2)说一说,看到了什么

(3)在书上画出对称图形。

(4)全班交流,选出几份在投影上展示。

第(2)题

(1)让学生拿出课前准备的小镜子,按本题图示的情境,把长方形,正方形,圆形,三角形纸片在镜面前摆一摆,对比镜面中的图形和桌面上的图形有什么关系。

(2)学生在小组内交流想法。

(3)全班交流

通过交流,引导学生进一步体会镜面的对称现象。

第(3)题

投影出示课文情境图,想一想:机灵狗镜子判断“现在是5时”对吗?

猜一猜:现在是几时?

(4)实验证明

A、取一时钟,将时间调至7时正(时钟钟面上不显示数字)

B、时钟背对学生,举起

C、取一镜子,对准钟面。镜子自然朝向学生。

D、让学生观察镜子里的图形,比较课文里的钟面图形,可以看出是一样的。

E、将钟面反转,让学生看清钟面时间。(7时)

(5)练一练

A、教师将时间调至3时

B、时钟背对学生,举起

C、取一镜子,对准时钟

D、让学生观察镜子,想一想:现在是几时?

E、反转时钟,进行验证。

三、巩固练习

1、课文第18页“练一练”的第1—3题。

第一题:

(1)先让学生猜一猜,并打上对号

(2)用镜子来试一试,进行验证。

第2题:

这是一种寻找对称图形的对称轴位置的简易方法,通过练习活动,使学生明白,如果对称图形能对折,那么折痕就是对称轴所在的位置。如果是生活中具有对称特征的物体,无法对折,那么租用镜面对称原理的对称图轴的办法也是明智的。

2、实践活动

3、(1)让学生收集一些对称图形、图案和照片,在班里展览。

(2)会剪纸的学生,自己动手剪一些简单的作品。

开展这类活动,不仅能让学生的兴趣、爱好和个性得到张扬,满足那些具有较强空间观念的学生的学习需要,而且也进一步促进学生对对称图形的特征的理解和掌握。

数学教学设计活动教案篇6

一、教学目标:

1、通过学习,使学生掌握四则运算和含有小括号的四则混合运算顺序,并学会正确计算。

2、通过学习,养成认真审题,规范书写,仔细计算的习惯。

二、教学重难点:

使学生掌握含括号的四则运算。

三、教学设备:

幻灯片、小黑板。

四、教学过程:

复习准备

星期天,爸爸妈妈带着玲玲去“冰雪天地”游玩,购买一张成人票需要24元,儿童票半价。购买门票需要花多少钱?学生在练习本上解答此问题。同桌两人说说自己是怎样解答的。

汇报:教师根据学生的汇报进行板书。

(1)242424÷2242412481260(元)24÷2是一张儿童票的价钱,是半价,所以用24÷2,前两个24是爸爸和妈妈的两张成人票的总价。两张成人票加上一张儿童票就是他们购买门票需要多少钱。

(2)24×224÷2481260(元)24×2是爸爸和妈妈两张成人票的总价,玲玲的儿童票用24÷2,再把三张门票的价钱加在一起就是总门票的价钱。我们用不同的方法解决了同一个问题,这两个综合算式有什么共同特点?这两个综合算式都是没有括号的,而且算式中有加减法也有乘除法。这样的综合算式的运算顺序是什么?学生总结运算顺序。

新课教学

1、(小黑板出示)先读出下面各题的运算顺序,再算出来。120—144÷18+35(58+37)÷(64—45)

(1)学生口述运算顺序,教师用框线图表示顺序。

(2)集体校对,说明注意点。

2、教学例1。

(1)把准备题

①中的144改写成36×4的形式,引出例1,120—36×4÷18+35

(2)问这道题中应先算什么?再算什么?乘除法在一起,你认为应当怎样计算?

(3)全班同学统练,一生板演,集体校对,讲评。

3、教学例2。

(1)把准备题②中的45改写成9×5的形式,引出例2,(58+37)÷(64一9×5)

(2)比较例2与准备题的异同,确定运算顺序。

(3)独立完成并自我评价,指名让一名学生向全班作汇报。

4、练习“试一试”。

(1)板书:1515—15×(94+54÷9)

(2)同桌同学互相交流,并独立进行计算。

(3)用投影校对典型错例,归纳并作出鼓励性评价。

5、师生共同归纳小结。

巩固练习

1、投影出示,让全体学生做填空题。

(1)280—43×6+540÷36可以同时计算的是x和x。

(2)120+(28×5—120)÷10第一步应该算x。

(3)100—(80+480÷24)×8第二步应该算x。

(4)317+104÷13×52一270最后一步应该算x。

2、课本“练习”第1题,先说出下面各题的运算顺序,再计算。

(1)请每位学生首先认真对4个小题进行审题。

(2)学生独立完成各题。

(3)全班集体校对,指出错误原因并订正。总结通过本节课的学习,特别是再看例1、例2使我们明白,在四则混合运算中,我们应先看清楚,再想明白,然后做正确。

数学教学设计活动教案篇7

教学内容:

教材108页——111页,例1及做一做

教学目标:

1、使学生在条形统计图的基础上认识和学习折线统计图进一步体会统计的意义及重要作用,体会教学来源于生活。

2、使学生认识折线统计图的特点,通过看统计图提出问题并解决问题,使学生的统计知识得到提高。

3、培养学生对现实生活的调查能力,激发学生的学习兴趣,培养学生的观察分析、整理能力。

教学重点难点:

1、了解折线统计图的特点。

2、根据折线统计图提出问题,解决问题。

教学过程:

一、情景导入:

观察主题图:同学们都参加过许多课外活动,今天教师带你们去科学宫参观科技展,去的同学很多,为了更清楚地了解参观人数情况,我们根据收信到的人数制作一个统计图。

二、合作学习

1、根据老师提供的数据,独立完成参观科技展人数的条形统计图,

2、根据这个(教材108页图)条形统计图能发现哪些信息?提出

问题:

①哪两年参观人数相同?(答:__年相同)

②哪一年参观人数最多?(答:__年)

③哪一年参观人数最少?(答:1998年)

3、引导学生说出完成统计图注意事项,老师再补充:

① 必须有标题名称,名称中要简要明了地说出内容和地点,标题下要注明统计内容的时间。

② 横轴、纵轴表示什么要标清楚。

4、除了会完成条形统计图,还有其它画统计图的方法。

三、今天来学习一种新的统计图---折线统计图

1、观察109页折线统计图

2、启以引导:看看这幅统计图与条形统计图有什么不同,同桌交流。学生说:折线统计图有格子;有点,还有一段一段的线。

3、边讲解折线统计图画法。

①让学生明白折线统计图是通过描点连线的方法画

②相同点:都能看出数据多少

不同点:表示数据方法不同,可以看到每一部分变

化趋势,能看到整体变化趋势。

③通过学习知道:什么是折线统计图;折线统计图特点;哪种统计图更好。

强调告诉学生:

1、象今天这样用曲折的线段表示数量增减变化的统计图是折线统计图。

2、折线统计图不仅能表示出数量,还能通过数量反映某一种事物变化的趋势。

3、两种统计图各有各的优点,生活中根据我们的需要选择合适的统计图。

巩固练习:

1、 完成110页例2及做一做。

2、 让学生去调查家庭上半年用水情况并制作出统计图。

小结:

在学习条形统计图的基础上更进一步学习了折线统计图,学会折线统计图画法和特点,懂得它在生活中有很大作用。

201034