说课稿

5U文学网 > 实用文 > 教学资料 > 说课稿 > 最小公倍数的说课稿

最小公倍数的说课稿

| 发昌

作为一位优秀的人民教师,常常要写一份优秀的说课稿,借助说课稿我们可以快速提升自己的教学能力。那么问题来了,说课稿应该怎么写?下面是由小编给大家带来的最小公倍数的说课稿7篇,让我们一起来看看!

最小公倍数的说课稿篇1

设计说明

1.从学生已有的知识经验出发,促进知识的构建。

本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让学生对公倍数和最小公倍数产生感性的认识。利用最大公因数的知识迁移,让学生自己抽象出公倍数和最小公倍数的概念,从而激发学生的学习兴趣,激活学生的思维。

2.体现学生的主体地位,提高教学的实效性。

《数学课程标准》的理念倡导,要注重角色转变,改变在以往的教学中只注重对学生知识的传授,而忽略了学生的主观能动性,要让学生学会自主学习,让学生主动参与课堂教学,在教学中尊重学生,凸显学生的主体地位。本设计在教学如何找两个数的最小公倍数时,放手让学生自主探究出方法,并观察公倍数和最小公倍数之间的关系,让学生得到充分的思考,提高教学的实效性。

课前准备

教师准备 PPT课件 投影仪

学生准备 数轴卡片 彩色笔

教学过程

⊙复习旧知,引入新课

1.复习。

分别说一说4和6的倍数分别有哪些。

4的倍数 6的倍数

4 6

812

1218

1624

20__

…………

2.导入。

师:我们分别列出了4的倍数和6的倍数。前面我们已经学过两个数公有的因数,今天来学习两个数公有的倍数。

设计意图:分别说出4和6的倍数,一是复习倍数知识,二是为学习公倍数和最小公倍数作铺垫,使学生的思维自然过渡到新知。

⊙公倍数与最小公倍数

1.探究概念。

(1)在数轴上表示数。

在数轴上分别找出表示4的倍数和6的倍数的点。(学生观察数轴,用两种不同颜色的笔在数轴上分别描出这些点)

(2)观察数轴,交流发现。

4和6公有的倍数有哪些?最小的是几?有没有最大的?(学生口答后,老师在投影仪上表示出来)

(3)迁移命名。

想一想我们已经学过的公因数和最大公因数,谁能给几个公有的倍数和其中最小的一个取名字?(公倍数 最小公倍数)

(4)理解意义。

请说一说什么是公倍数和最小公倍数。(学生口答:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数)

(5)集合表示法。

课件出示教材68页的集合圈。为什么集合圈里要写上省略号?(一个数的倍数的个数是无限的,几个数的公倍数的个数也是无限的)

2.练习。(课件出示)

把不超过50的3和6的倍数、公倍数填在68页“做一做”中的集合圈里,再找出它们的最小公倍数。请一位同学板演,其他同学填在教材上,然后集体订正。

设计意图:通过引导学生对具体问题的进一步研究,帮助学生加深对公倍数、最小公倍数意义的理解,使表象更加清晰,由此让学生亲身经历一个从具体到抽象的教学过程。

⊙最小公倍数的求法

1.探究方法。

师:你是怎样求6和8的公倍数的?可以怎样表示?

(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。

(2)小组讨论,互相启发,再全班交流。

可能出现以下几种方法。

方法一 先分别写出6和8各自的倍数,再从中找出它们的公倍数和最小公倍数。

方法二 先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。

方法三 先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。

方法四 从小到大写出8的倍数,边写边判断是不是6的倍数,第一个6的倍数,就是6和8的最小公倍数。

最小公倍数的说课稿篇2

教学要求 在知道两数特殊关系的基础上,使学生学会用不同的方法求两个数的。

教学重点 掌握求两个数的的方法。

教学难点 正确、熟练地求出特殊情况下两个数的。

教学过程

一、创设情境

1.口算练习:将练习十五的第五题做在书上,做完后集体修订正。

2.回答问题:什么是公倍数?什么是是?

3.求24和32的。

4.说说下面每组中的两个数有什么关系?

12和36 4和5

二、揭示课题

我们已经学会求两个数的,这节课我们将继续学习求特殊情况下两个数的。(板书课题:求特殊情况下两个数的)

三、探索研究

1.教学例3

(1)先让学生用上节课学的方法分别求出这两组数的。

(2)观察结果:通过这两组数的,你发现了什么?

(3)归纳方法:先让学生讲,再指导学生看教材第73页的结论。

(4)尝试练习。

做教材第74页下面的做一做,先让学生判断每组中两个数的关系,再解答出来集体订正。

四、课堂实践

1、做练习十五的第6题,先让学生写,再让学生说,最后集体订正。

2、做练习十五的第7题,先让学生观察每组中两个数的关系,再让学生正确、熟练地说出它们的,并订正。

3、做练习十五的第9题。先让学生独立判断,对的打,错的打,再点几名学生讲打或的理由。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

做练习十五的第8题。

课题三:求三个数的

教学要求:

使学生在理解的基础上学会求三个数的。

教学重点:

求三个数的与求两个数的的区别。

教学难点:

会求三个数的。

教学过程

一、创设情境

求下面各组数的。(学生做完后,集体订正时,点几名学生说怎样求两个数的)

5和8 7和28 12和16

二、揭示课题

我们已经学会求两个数的,怎样求三个数的呢?现在我们一起来学习。(板书课题:求三个数的)

三、探索研究

1.教学例4。

(1)请同学们把8、12、和30分解质因数,并指出公有质因数是哪些?(教师根据学生的回答板书如下)

8=222

12=223

30=2 35

(2)分组讨论。

①8、12、30的必须包含哪些质因数?

②如果先取这三个数公有质因数1个2,再取每两个数公有质因数1个2和1个3,最后取各自独有的质因数2和5 ,(22235)这些质因数是否包含了8、12和30所有的质因数?

③8、12和30的是多少?

(3)归纳:8、12和30的,必须包含这三个数全部公有的质因数(1个2)和每两个数公有的质因数(1个2和1个3)以及各自独有的(2和5),这些质因数积(22235=120)就是8、12和30的。

(4)求三个数的的方法。

求三个数的与求两个数的的方法大同小异。(板书短除式)

8 12 30

①先用什么数作除数去除?

②再用什么数作除数去除?(重点指导:另一个数要移下来)

③一直除到什么时候为止?

④最后怎样做就可以求出三个数的?

(5)比较求三个数的与求两个数的有什么不同?(先可让学生说,然后老师归纳)

相同点:都是用短除的形式分解质因数,都是把所有的除数和商连乘起来。

不同点:求两个数的时,除到两个商是互质数这止;而求三个数的时,要先用三个数公有的质因数去除,再用两个数的公有的质因数去除,一直除到三个商中每两个数都是互质数(两两互质)为止。

四、课堂实践

1.做教材第75页的做一做。

2.做练习十五的第12题,先让学生看,再指出它的错误,使学生明确:错在三个数公有的质因数还没有找完。在用6除时把8移下来,就等于在里多取了一个质因数2。

3.做练习十五的第13题,学生口答。

五、课堂小结

学生小结今天学习的内容、方法。

六、课堂作业

1.做练习十五的第10、11、14题。

2.有兴趣、有余力的学生可做练习十五的第21__~23__题。

课题四:最大公约数和的比较

教学要求 通过比较,使学生进一步分清求最大公约数和的相同点和不同点,并能正确地求出几个数的最大公约数和。

教学重点 比较求两个数的最大公约数和的不同点。

教学用具 在投影片上画好教材第80页的表格(留空备用)

教学过程

一、创设情境

1.做练习十六的第1题,先让学生将能被2整除的数用△圈起来;能被3整除的数用○圈起来;能被5整除的数用□圈起来,做在书上,集体订正。

2.很快说下面每组数的。

5和7 9和45 9和12 2、3和11 8、10和40 3、4和6

二、探索研究

1.教学例5。

(1)出示例5(点2名学生在黑板上做,其余的学生做在练习本上):

28 42 28 42

7 14 6 7 14 6

2 3 2 3

28和42的最大公约数是: 42和28的是:

27=14 2723=84

(2)揭示课题:我们现在来比较一下,求两个数的最大公约数和的方法有什么相同点和不同点。(板书课题:最大公约数和的比较)

(3)出示留空的表格。

先让同桌的学生互相说说,再点几名学生谈自己的看法,最后归纳填表。

(4)看表上的不同点回答。

为什么它们在计算时不相同?

使学生明确:①因为两个数最大公约数只包含这两个数全部公有质因数,所以只把这两个数全部公有质因数连乘起来,也就是把所有的除数乘起来,就得到它们的最大公约数。②而两个数的不仅包含这两个数全部公有的质因数,还包含它们各自独有的质因数,所以要把这两个数全部公有的质因数以及各自独有的质因数连乘起来,也就是把所有的除数和商乘起来,就得到它们的。

(5)尝试练习。

做教材第80页的做一做,然后点几名学生说一说是怎样做的。

三、课堂实践

做练习十六的第2题。

四、课堂小结

学生小结求两个数的最大公约数和的异同点。

五、课堂作业。做练习十六的3、4、5、6__题。

最小公倍数的说课稿篇3

教学内容:

最小公倍数

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

学习目标:

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

学习任务:

任务一理解最小公倍数的意义

任务二求两个数的最小公倍数

教学过程:

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学

任务一:

一、任务呈现

师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12、24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:481216202428----4的倍数

爸爸的休息日:612182430-----6的倍数。

共同的休息日:1224-----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调4的公倍数就是妈妈的休息日

6的公倍数就是爸爸的休息日

4和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天?12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

二、那如何求最小公倍数呢?

任务二:

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出最大的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和74和8

3和56和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分。

最小公倍数的说课稿篇4

一、教材简析

《最小公倍数》是人教版五年级下册第88-90页的教学内容,是在学生已经了解了倍数、因数以及公因数和最大公因数的基础上教学的。这一内容的学习为今后的通分学习打下基础,具有科学的、严密的逻辑性。

二、教学目标及教学重、难点

根据课程标准和教学内容并结合学生实际,我认为这节课要达到以下的教学目标:

1.理解算理并学会计算两个数的最小公倍数,通过对最小公倍数算理的探究,培养和发展学生的逻辑思维能力。

2.能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。教学重点:公倍数与最小公倍数的概念建立。学会求两个数的最小公倍数。

教学难点:理解求两个数最小公倍数的算理,能运用“公倍数与最小公倍数”的知识解决简单的生活实际问题。

三、设计理念

数学教育的出发点和归宿是学生熟悉的现实生活。让学生从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。而探究性学习又是新一轮基础教育课程改革所倡导的学习方式。

在教学中,通过创设情境,让学生自主发现问题,获得能力发展和深层次的情感体验,在得到抽象化的数学知识之后,及时应用到新的现实问题中去,从而渗透数学归纳思想,达到方法的多样化,个性化。学生构建数学概念的过程不能简单“告知”,通过引导,让学生亲自操作和体验,在解决问题中初步感知公倍数、最小公倍数的特点,明晰求最小公倍数的基本。让学生通过具体的操作和交流活动,认识公倍数和最小公倍数。思路,在富有生命活力的再创造过程中,主动建立概念,完成数形结合思想的渗透。

四、教学过程

(一)故事引入感知概念

出示关于阿凡提的故事,巴依老爷说:“从八月一日起,我要连续出去收账3天才休息一天,我的账房先生要连续收账5天才可以休息一天,你们就在我们两人同时休息的时候来吧。我肯定给钱。”阿凡提动了动脑筋,便带长工们离开了。那么在这一个月里,阿凡提可以选哪些日子去呢?你会帮他们把这些日子找出来吗?”同桌讨论,学生合作在日历卡上找出巴依老爷和账房先生的共同休息日。

根据学生的汇报,教师完成板书:

巴依老爷的休息日4、8、12、16、20、24、28

账房先生的休息日6、12、18、24、30

他们共同休息日12、24

最早的休息日12

【设计意图】以故事的形式提出问题,让学生通过解决这个生动有趣的实际问题,获得对公倍数、最小公倍数概念内部结构特征的直接体验,积累数学活动的经验。学生在解决问题中初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。这样,不仅激发了学生学习的兴趣,而且让学生感受到数学与生活是紧密联系的,体会到数学源于生活又高于生活的特点。

(二)加深理解总结方法

1.公倍数和最小公倍数的概念教学

从“巴依老爷的休息日”、“账房先生的休息日”、“他们共同休息日”、“最早的休息日”引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”)。教师完成板书

巴依老爷的休息日(4的倍数)4、8、12、16、20、24、28账房先生的休息日(6的倍数)6、12、18、24、30??他们共同休息日(4和6的公倍数)12、24

最早的休息日(4和6的最小公倍数)12

【设计意图】怎样能让学生深刻理解最小公倍数的意义,是本节课的一个重点。学生构建数学概念的过程,决不能是简单“告知”的过程,以概念为本的学习需要经历一些经验性的活动过程。通过学生亲自操作和体验,在一种富有生命活力的再创造过程中,主动建立概念。完成数形结合思想的渗透。

2.用集合圈表示倍数、公倍数、最小公倍数。首先让学生用数学上的集合圈的形式表示4的倍数和6的倍数。(课件出示集合圈)。然后利用课件使集合圈重叠一部分。给学生问题:如果这两个集合圈这样放在一起,相交的这一部分表示什么呢?(课件出示集合圈的动态过程)

【设计意图】根据弗赖登塔尔“数学是一项人类活动”的观点,从学生熟悉的生活开始,从生活中的问题到数学问题,从具体到抽象概念,从特殊关系到一般规则,逐步通过学生自己的发现去学习数学。进行集合思想和极限思想的渗透,感受数学化的简洁美。

(三)巩固运用

再求新法(本环节为两个数的最小公倍数的算理和方法引探是教学难点)

出示同学排队的题目:六(1)班同学在组织跳绳活动。班长说:“我们可以分成6人一组,也可以分成8人一组,都正好分完。这些学生至少有几人?”问题出示后,给学生独立思考的时间,学生很快用列举法求出6和8的最小公倍数。然后我预设让学生寻找更简便的大数翻倍法,以及进一步探索用分解质因数的方法求最小公倍数,先把6和8分解质因数,观察质因数之间的关系,发现2是它们公有的质因数,而3和4是它们各自独有的质因数,从而突破难点。使学生理解用分解质因数求最小公倍数就是全部公有质因数和各自质因数的乘积。而短除法实际就是分解质因数的简便算法,并且引导学生发现,短除号左边的数就是它们的公有质因数,下面的数就是相对应数各自独有的质因数。在学生交流各自的方法后。我们可以把这些数在数轴上表示出来。上面表示6的倍数,下面表示8的倍数。所圈重合的点是6和8的公倍数。(教材中出现了数轴上表示倍数的方法,考虑到学生想不到这种方法,我参与活动中,最后展示这种图形结合的方法。)

【设计意图】用富有生活问题的情境,激发学习兴趣。探究学习是新一轮基础教育课程改革所倡导的学习方式。在教学中,创设一种情境,通过学生自主发现问题,获得能力发展和深层次的情感体验。渗透数学归纳思想,体现方法的多样化,个性化。

(四)解决问题深化理解

在列举法的基础上,发现特殊关系的两个数的最小公倍数的规律。由一道生活问题结束本课。(课件出示一道生活情境题)

【设计意图】数学教育的出发点和归宿都应当是学生熟悉的现实生活。学生得到抽象化的数学知识之后,应及时把它们应用到新的现实问题中去。

最小公倍数的说课稿篇5

教学目标

1、通过练习,使学生发现求两个数的最小公倍数的一些简捷的方法,并能根据两个数的关系选择用合理的方法求两个数的最小公倍数。

2、让学生感受数学与生活的联系,体会解决问题策略的多样性。

教学重、难点:

求两个数的最小公倍数的一些简捷的方法。

教学过程:

一、基础练习

找出下面每组数的最小公倍数。

4和63和75和910和6

二、完成第25页的5~8题。

1、第5题

⑴①让学生观察左边4题,说说这几组数有什么共同的特点。

②找出每组两个数的最小公倍数。

③比较和交流:有什么发现?

(两个数的最小公倍数就是它们的乘积。)

⑵独立完成右边4题,再比较交流发现了什么?

2、第6题

先由学生独立完成。

然后说说分别是什么方法求出每组上数的最小公倍数的?

3、第7题

先让学生用列表的方法找出答案,并通过交流使学生体会到列表的过

程实际上就是求7和8的最小公倍数。

4、第8题

先让学生说说求几月几日小林和小军再次相遇,可以先求哪两个数的

最小公倍数,再让学生独立解答。

三、小结:通过今天这一节课的学习,你有什么收获?

四、思考题

提示:先用列举法找3、4和6的最小公倍数。

最小公倍数的说课稿篇6

教学目标:

1、复习、整理本单元的基本概念,在练习中进一步理解公因数、最大公因数、最简分数等概念。

2、通过输理、比较,建立相关概念的关系。

3、在游戏、应用中体验数学的趣味性。

基本教学过程:

一、基本练习

1、复习找因数、公因数的方法:

练习第一题。

学生填写后,说说你是怎么想的。巩固找公因数的方法。

2、复习约分的方法:

练习第二题先约分,再连线。

二、运用知识模型:

1、复习分数的意义、约分等知识的综合运用。

第3题。

让学生自己用分数表示,并交流自己的思考方法。

2、第4题。

先让学生找出分数,并说说自己的思考方法?

3、第5题。

本题开放性强,学生可以自由分割,并用分数表示。

三、思考题:

本题先要帮助学生理解题意,并思考:选择怎样的地砖才能没有剩余?引导学生认识到问题的实质是要求24和30的公因数是1、2、3、6,因此可以选边长是1dm,2dm,3dm,6dm的方转。

四、实践活动:

先让学生用最简分数表示小明一天中每项活动的时间,巩固分数的意义、分数与除法、约分等知识。然后让学生自己设计一张表格,并用分数知识进行交流。

最小公倍数的说课稿篇7

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

教学重点:

使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

教学难点:

使学生学会并理解求两个特殊数的最小公倍数的方法。

教学实录:

一、引入:

师:同学们,现在是什么季节?

生:春天。

师:对,春天来了,草绿了,花开了,蜜蜂们开始忙碌起来了,其实在蜜蜂的王国里也有许多有趣的数学问题。大家看,(课件出示)蜜蜂们每天白天都忙碌的采花粉酿花蜜,但是,由于这个蜜蜂王国的日益壮大,蜜蜂们越来越多,每次大家同时采完蜜回来往往非常拥挤,这可怎么办呢?于是蜂王就想了一个办法。

点评:教师努力营造让学生爱学、乐学的课堂教学环境,密切联系有趣的生活实例,通过课件演示,创设教学环境,使学生在愉快的氛围中学习数学,同时使本课的数学知识赋予一定的价值

二、新授

1.(1)师:蜂王把它们分成了2组,1组每30分钟回来一次,1组每40分钟回来一次。它想这样可就解决问题了。同学们,你们说蜂王是否解决了这个问题?

生①:解决了。

生②:没有解决,过一段时间,它们会一起回来的。

师:有的同学认为这个办法可以,有的认为不行。请你们自己证明一下,在证明时,你可以利用手中的学具,也可以用你喜欢的其他方法。

(2)学生讨论

(3)学生汇报

师:哪个小组来展示你们的研究成果?

生①:用纸条证明,(学生在展台演示)每隔30分钟回来一次的,第四次回来要120分钟,每隔40分钟回来一次的,第三次回来也要120分钟,当120分钟时它们会同时回来,发生碰撞,所以不行。

师:这种方法形象直观,非常好,还有不同和方法吗?

生②:用数轴证明。(学生在展台演示)

师:大家认为这种方法怎么样?

生:简洁清楚。

师:有的小组用的是摆纸条的方法,有的小组用的是数轴表示的方法,都十分形象,还有不同的方法吗?

生③:找倍数的方法证明。30的倍数有:306090120;40的倍数有:4080120,我发现它们有共同的倍数120,所以第120分钟它们会相撞。

板书:30的倍数:306090120

40的倍数:4080120

(4)师小结:刚才同学们采用了不同方法,但都是先找出30和40的倍数,从而发现它们有公有的倍数120,看来是真的不行。

2.师:咱们换一个数试试。一组60分钟回来一次,一组90分钟回来一次。请同学们再来证明一下。

学生验证。

学生汇报。

生:60的倍数有:60120180;90的倍数有:90180。所以在180分钟时它们会相遇。

师:恩,还是不行,我们发现60和90也有公倍数。

3.师:那是不是任意两个数都有公倍数呢?请同学们在小组里交流一下。

生:任意两个数都有公倍数,例如17和18的公倍数就是它们两个数的乘积。

师:通过刚才同学们的汇报我们可以看出:任意两个数都有公有的倍数,也就是公倍数。什么是公倍数?

生:两个数公有的倍数就是他们的公倍数。

师:公倍数有多少个?

生:有无数个,找到两个数的一个公倍数,用它去乘2、乘3……所得的积一定是这两个数的公倍数。

师:我们发现任意两个数都有公倍数,而且每组公倍数的个数都是无限的。那么三个数之间是否也有公倍数?四个数呢?五个数呢?

生①:举例:2、4和5的公倍数是20。

生②:无论几个数,只要相乘,它们的乘积一定是它们的公倍数。

师:那你能找出最大的或最小的公倍数吗?

生:没有最大的,只有最小的。

师:为什么?

生:因为公倍数的个数是无限的,所以没有最大公倍数。

点评:通过引导学生对具体问题作进一步研究,帮助学生加深对公倍数、最小公数意义的理解,使表象更加清晰。由此让学生亲身经历了一个从具体到抽象的数学化的过程。

4.找最小公倍数

4和85和106和156和94和5

让学生找出每组数的公倍数。

师:4和8你们怎么找得这么快?能给大家说一说你的方法吗?

生:大数要是小数的倍数,大数就是它们的公倍数。

师:你们还能发现了什么?

小组讨论,之后汇报。

生①:如果大数是小数的倍数,那么它们的乘积也是它们的公倍数。

生②:5和10的最小公倍数是10,并不是它们的乘积。

生③:4和5两个数是互质数。互质数的最小公倍数师它们的乘积。

点评:教师直接把找特殊情况下两个数最小公倍数这一问题抛给学生,通过学生练习、让学生不断发现不断改进。不同的学生就会有不同的想法,教师却从不给出结论性的评价,而是始终鼓励他们大胆猜测验证,互相补充说明,学生真正投入探究学习的氛围中,体验着学习给他们带来的快乐。

三、总结

师:通过刚才的学习与练习,我们学会了用列举法求两个数的最小公倍数并且发现了一些特殊数求最小公倍数的方法。

设计思路:

“最大公倍数”是一节概念课,学起来比较枯燥。本课是在学生学习了最大公因数以后进行教学的,最大公因数和最小公倍数虽然属于不同的概念,但它们的学习方法相似。本课设计强调了学习方法的借鉴,让学生借鉴学习最大公因数的方法研究最小公倍数的意义,一开课,我就通过情景导入,既激发了学生的学习兴趣,又使学生在解决蜜蜂回巢的问题中初步理解公倍数和最小公倍数的概念,学会求最小公倍数的基本方法。在找公倍数的过程中,呈现出找法的多样性,引导学生分析出各种方法的优劣,促进了学生思维的个性化发展;然后变换情景中的问题作为进一步学习的材料,引导学生通过多个实例发现其中的规律,加深对公倍数和最小公倍数的概念的理解;最后,通过寻找最小公倍数的练习探索求特殊关系两个数最小公倍数的方法,加深了学生的理解与应用。同时,使学生初步感知从特殊到一般的规律,培养同学之间的协作精神。

评析:本节课虽是概念教学,但学生思维活跃,情绪高昂,学得生动有趣。

1.结合学生实际创设问题情景。“最小公倍数”这一课,与学生的生活实际看似无多大联系,在本堂课的教学中,教师通过对教材内容作适当补充调整,为学生提供了生动有趣的信息,从而构建了一种解决问题的数学课堂。先以故事的形式提出问题,为学生提供了一个“公倍数”的实物模型,让学生借助具体实例,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。在此基础上,引导学生走进数学,抽象出公倍数、最小公倍数等数学概念。这样的设计,不仅激发了学生学习的强烈兴趣,而且让学生感受到数学与生活是紧密联系的,体会到学习数学源于生活又高与生活的特点。

2.让学生经历知识的形成过程。本节课,教师充分体现了这一新课程理念。如,在获取公倍数、最小公倍数的特征这个环节中,教师为学生创设了一定的情景,然后放手让学生合作解决,教师在为学生提供自主探索空间的同时,鼓励学生个性化的发展,体现了找法的多样性,并注意找法的优化,使学生在体验中不断优化方法,在此基础上抽象出公倍数、最小公倍数的概念。在初步获得所学知识后,教师又巧妙地引发学生更深层次地思考,使学生产生了深刻的体验,从中进一步感悟并理解公倍数和最小公倍数的概念。同时通过自主探究发现互质的两个数的最小公倍数是这两个数的乘积;倍数关系的两个数的最小公倍数是其中较大数。

196008