教案模板

5U文学网 > 实用文 > 教学资料 > 教案模板 > 2022乘法分配律教学设计

2022乘法分配律教学设计

| 发昌

作为一名人民教师,有必要进行细致的教案准备工作,借助教案可以有效提升自己的教学能力。那么你有了解过教案吗?下面是由小编给大家带来的2022乘法分配律教学设计7篇,让我们一起来看看!

2022乘法分配律教学设计篇1

教学内容

苏教版《义务教育课程标准实验教科书数学》四年级(下册)第54~55页。

教学目标

1、使学生在解决问题的过程中发现并理解乘法分配律,初步体会应用乘法分配律可以使一些计算简便。

2、使学生在发现规律的过程中,发展比较、分析、抽象和概括能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系。

3、使学生能联系实际,主动参与探索、发现和概括规律的学习活动,感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强学习的兴趣和自信。

教学过程

一、创设情境,谈话导入

谈话:同学们,我们学校有5个同学就要去参加“无锡市少儿书法大赛”了,书法组的张老师准备为他们每人买一套漂亮的服装,我们一起去看看好吗?(课件出示例题情境图)

二、自主探究,合作交流

1、交流算法,初步感知。

提问:从图中你获得了哪些信息?

再问:买5件上衣和5条裤子,一共要付多少元呢?你能解决这样的问题吗?请同学们在自己的本子上列出算式,再算一算。

反馈:你是怎样解决这一问题的?为什么这样列式?

组织学生交流自己的解题方法,再分别说说两个算式的意义。根据学生回答,教师利用课件演示,帮助解释。

谈话:两个算式解决的都是同一个问题,它们的计算结果也相等,那你会把这两个算式写成一个等式吗?

学生在自己的本子上写,教师板书,让学生读一读。

谈话:刚才我们算的买5件夹克衫和5条裤子,一共要付多少元?如果张老师不这样选择,还可以怎样选择?(买5件短袖衫和5条裤子)

提问:买5件短袖衫和5条裤子,一共要付多少元呢?你能用两种方法解答吗?

根据学生回答,列出算式:32×5+45×5和(32+45)×5

再问:这两个算式有什么关系?可以用什么符号把它们连接起来?

启发:比较这两个等式,它们有什么相同的地方?

2、深入体验,丰富感知。

引导:看表情,相信大家一定或多或少地发现了等式两边算式之间的联系。现在请每个小组拿出信封中写有算式的纸条,想一想在这几组算式中,哪些可以用等号连起来,哪些不能?

分组汇报、交流。引导学生说一说:最后两组为什么不能用等号连起来?两个算式的计算结果分别是多少?有办法使他们变得相等吗?

要求:你能写出一些这样的等式吗?先试一试,再算一算你写出的等式两边是不是相等。

学生举例并组织交流。

3、揭示规律。

提问:像这样的等式,写得完吗?

谈话:你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

小结:a加b的和乘c,与a乘c的积加b乘c的积的和是相等的。这就是乘法分配律。

三、实践运用,巩固内化

1、“想想做做”第1题。

谈话:下面我们利用乘法分配律解决一些简单的问题。

出示“想想做做”第1题,让学生在书上填一填。

学生完成后,用课件反馈。

2、“想想做做”第2题。

你能运用今天所学的知识解决下面的问题吗?课件出示题目,指名口答。

回答第2小题时,让学生说一说理由。

3、“想想做做”第3题。(略)

四、梳理知识,反思总结

提问:今天这节课,你有什么收获?有什么感受想对大家说?

五、布置作业

“想想做做”第4、5题。

[说明]

数学教学是数学活动的教学。本节课注重引导学生在自主探索的活动中,感悟和发现乘法分配律,变教学生“学会”为指导学生“会学”。教学中,先组织学生通过用两种不同的方法解决一些实际问题,在两个不同的算式之间建立起联系,得到了两个等式,并比较这两个等式有什么相同的地方,让学生初步感知乘法分配律。之后,给学生提供体验感悟的空间,为学生提供符合乘法分配律和不符合乘法分配律的五组算式,引导学生在小组辨析与争论中,进一步形成清晰的表象。在此基础上,让学生自己再写出一些符合乘法分配律的等式,既为概括乘法分配律提供更丰富的素材,又加深了对乘法分配律的认识。随后的练习设计层次清楚,重点突出,形式活泼,有效地促进学生知识的内化。这些教学活动使学生经历了知识的形成过程,有利于学生改善学习方式。

2022乘法分配律教学设计篇2

教学内容

P36页例3,做一做,练习六习题。

教学目标

1、知识与技能:引导学生探究和理解乘法分配律。

2、过程与方法:使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

3、情感与态度:培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

教学重点

乘法分配律的意义和应用。

教学难点

乘法分配律的反应用。

教学过程

一、目标导学

(一)导入新课

1、复习导入

(8+2)×1258×125+2×125

2、揭示课题:乘法分配律

(二)展示目标(见教学目标1、2)

二、自主学习

(一)出示自学提纲(自学教材P36页例3并完成自学提纲问题)

1、计算(4+2)×25的运算顺序是什么?4+2表示什么?再乘25表示什么?

2、计算4×25+2×25的运算顺序是什么?4×25表示什么?2×25表示什么?把它们的积相加表示什么?

3、计算这两道题你发现了什么?能用一句话概括吗?

4、这是乘法的什么运算律?用字母怎样表示?

5、会用简便算法计算4×25+6×25吗?

(二)学生自学(学生对照自学提纲,自学教材P36页例3并完成自学提纲问题,将不会的问题做标注)

(三)自学检测

下面哪些算式运用了乘法分配律?

117×(3+7)=117×3+117×7

24×(5+12)=24×17

(4+5)×a=4×a+5×a

三、合作探究

(一)小组互探(自学中遇到不会的问题,同桌或学习小组内互相交流。把小组也解决不了的问题记好,到学生质疑时提出,让其他学习小组或教师讲解)。

(二)师生互探

1、解答各小组自学中遇到不会的问题。

2、针对自学提纲5题请不同方法同学汇报。

3、结合“自学提纲”引导学生归纳总结:(并板书)

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫乘法分配律。

四、达标训练(1、2题必做,3题选做、4题思考题)

1、下面哪个算式是正确的?正确的打√,错误的打×。

56×(19+28)=56×19+28()

32×(7+3)=32×7+32×3()

64×64+36×64=64×(64+36)()

2、下面每组算式的得数是否相等?如果相等,选择其中一个算出得数

⑴25×(200+4)⑵35×201

25×200+25×435×200+35

⑶265×105—265×5⑷25×11×4

265×(105—5)11×(25×4)

3、用乘法分配律计算。

103×2020×5524×205

4、在()里填上适当的数。

167×2+167×3+167×5=167×()

28×225—2×225—6×225=()225

39×8+6×39—39×4=()×()

五、堂清检测

(一)出示检测题(1-2题必做,3题选做,4题思考题)

1、用简便方法计算。

24×75+24×25125×22—125×14

(25+20)×435×99+35

2、每个同学要用9本练习本,四(1)班有42人,四(2)班有38人,这两个班共需要多少本练习本?

3、计算。

89×10135×36+35×63+35

4、小马虎由于粗心大意把30×(□+3)错算成30×□+3,请你帮忙算一算,他得到的结果与正确结果相差多少?

(二)堂清反馈:

作业布置

练习册相关习题。

板书设计

乘法分配律

一共有多少名同学参加了这次植树活动?

(1)(4+2)×25(2)4×25+2×25

=6×25=100+50

=150(人)=150(人)

(4+2)×25=4×25+2×25

(a+b)×c=a×c+b×ca×(b+c)=a×b+a×c

两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。

2022乘法分配律教学设计篇3

【教学内容】

《义务教育课程标准实验教科书数学》(青岛版)六年制四年级下册第二单元信息窗2《乘法分配律》。

【教材简析】

本信息窗是学生在学习乘法结合律和乘法交换律的基础上进行的,是乘法运算规律的一个完善。本节课充分利用学生熟悉的生活情境,以济青高速公路为素材,通过行驶在高速公路上的两辆汽车提供的信息,引出了对乘法分配律的探索,让学生体验数学与日常生活的密切联系,同时注重知识的内在联系,让学生利用自己已学的知识体验推动新知识的学习,从而发展了学生的迁移能力。

【教学目标】

1.结合相遇问题的情境,在解决问题的过程中,亲历观察、猜想、验证、归纳、推理等数学活动,发现并理解乘法分配律。

2.学生在发现乘法分配律的过程中,发展比较、分析、抽象和概括的能力,增强用符号表达数学规律的意识,进一步体会数学与生活的联系,学生对乘法分配律的认识由感性上升到理性。

3.学生感受数学规律的确定性和普遍适用性,获得发现数学规律的愉悦感和成功感,增强合作学习的意识。

【教学重点】

让学生亲历探索乘法分配律的过程,在猜想验证等自主探索活动中得出乘法分配律,使学生对分配律的认识由感性上升到理性。

【教学难点】

清楚地表述自己发现的规律,理解及应用乘法分配律。

【教学过程】

一、创设情境,感知规律

1.提出问题,列出算式。

出示情境图

谈话:瞧,这是济青高速公路!在这里,还藏着许多数学信息,让我们一起来找找吧!请你仔细观察,从图片和文字中你能发现什么数学信息?根据这些信息,你能提出什么数学问题?

信息预设:大巴的速度是每小时行110千米,中巴的速度是每小时行90千米,两车同时相向而行,大约2小时相遇。

问题预设:济青高速公路全长约多少千米?(板书)

谈话:请你试着用两种方法在答题纸上解答。

生独立解答。

预设:

2.结合情境,感知规律。

提出要求:结合线段图说说算式每一步的含义。

回答预设:

①我先算出1小时两辆客车一共行驶多少千米,然后再求两小时行驶多少千米。也就是济青高速的全长是多少千米。

②我先求这辆大客车2小时行驶的路程;小客车2小时行驶的路程。然后把这两部分加起来就是济青高速公路的全长。

【设计意图:把相遇问题通过学生的理解转化成数学问题,这是思维的抽象,也是数学化的过程,既能激发学生研究的欲望,营造研究的氛围,又使学生探究的问题清晰明了。结合情境理解算的合理性,利用学生的学习和生活经验初步感知乘法分配律的存在。】

二、研究素材,猜测规律

教师引导学生观察算式谈发现。

预设发现:两个算式结果相等。可以用等号连接。

教师引导学生从算式结构和计算方法的特点观察算式的左边和右边有什么不同。

预设区别:

①左边有3个数,右边有4个数,两个乘法算式中都有相同的因数2。

②左边有小括号,应该先算加法,再算乘法;右边先算乘法,再算加法。

谈话:根据前面运算律的学习,你有什么想法?

预设回答:这可能又是一个规律。

【设计意图:抛开情境,观察算式,使学生初步感受到两种方法的结果一样。通过观察算式结构和计算方法的不同,渗透规律特点。使学生建立“猜想是探究获得结论的前提”这样的研究意识。】

三、讨论交流,验证规律

1.举例验证规律。

谈话:这只是我们的一个猜想,你能再举一些这样的例子来进行验证吗?如果有需要,可以用计算器进行举例。

学生独立计算举例。

指生代表板演,再指一名学生举例。其余学生同位交流,并用计算器帮助同位验证。

谈话:请你先和同位交流你举的例子,并用计算器帮同位验证一下他的等式是否成立。

预设举例:(25+35)×4=25×4+35×4

(60+50)×2=60×2+50×2

(65+55)×42=65×42+55×42

教师引导学生发现像这样的例子举不完,可以用省略号表示。

2.观察几组等式的相同点。

教师引导学生观察这几组等式的左边和右边分别有什么相同点。

预设回答:

①这几组等式的左边都是两个数的和乘一个数。

②这几组等式的右边都是把两个数分别与第三个数相乘,再把积相加。

3.总结规律。

教师引导学生用自己的话说说这个规律。

谈话小结:刚刚我们通过猜想、验证得出的结论就是乘法分配律。

教师出示乘法分配律。

谈话:请你边读边理解,并把它记在心里,比比谁记得又快又准确。

生按要求说什么是乘法分配律。

谈话:我们用这么多的算式和文字来表示它,麻不麻烦?有没有简便的方法?

预设回答:可以用字母表示。

教师要求学生在答题纸上试着用字母abc来表示乘法分配律。

学生试着在答题纸上写字母表达式。

指生板演(a+b)c=ac+bc。

谈话:对于乘法分配律用字母来表示,感觉怎么样?

预设回答:简洁、明了,把复杂的事情简单化,这就是数学的美,一种清晰而简洁的语言!

教师小结:刚刚我们经历了猜想、验证、得出结论的过程,探究出了乘法分配律,还能用字母把这么多的算式写成一个算式。

【设计意图:让学生举例说明规律的存在,鼓励学生表达这个规律,从具体的实例中抽象概括出乘法分配律,学生经历观察、描述、操作、思考、推理、概括从“非正规化”到“正规化”的学习过程。】

四、巩固拓展,应用规律

1.连一连。

2.在□里填上合适的数或字母。

3.火眼金睛辨对错。

2022乘法分配律教学设计篇4

教学目标:

1、通过探索乘法分配律中的活动,学生进一步体验探索规律的过程,初步学习体会提出猜想的方法及类比,说理,举例论证的方式,发展学生的思维力,创造力。

2、引导学生在探索的过程中,自主发现乘法分配律,并能用字母表示。

3、能够运用乘法的分配律进行简便计算。

重点、难点:

重点:学生参与推导乘法分配律的过程。

难点:乘法分配律的推理及运用。

教学过程:

一、比赛激趣,提出猜想.

(1)同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做A组的题,右边的两组做B组的题,看谁做的又对又快,开始)

9×(37+63)9×37+9×63

(2)评出胜负。(做完的同学请举手,汇报计算过程。可以看出左边的同学做得比较快,(问同学)你们有什么意见吗?)刚才的计算中你发现这两道题有什么关系吗?

教师让学生比较两个算式的异同点,并指名说一说自己找出的规律。

引导学生发现:这两个算式的运算顺序不同,但结果相同,两道题其实可以互相转化,可以用一个等式表示:9×(37+63)=9×37+9×63

(3)将学生的发现以他(她)的名字命名为“____猜想”。

【设计意图:在课的开始,组织数学热身赛能调动学生的学习积极性。】

二、引导探究,发现规律。

1、(我们下面就一起来验证一下这位同学的猜想在其它的题里也是否成立?请看大屏幕。)昨天,老师去超市里买东西,看到下面这些物品。橙子每箱28元,苹果每箱22元。如果橙子和苹果各买3箱,一共需要多少钱?

(1)全班同学独立完成。

(2)谁愿意把自己的方法说给大家听听。(生回答,师板书)

还有不一样的方法吗?谁来说说看?(生回答,师板书)

算式(28+22)×3和28×3+22×3的每一步各表示什么?谁能说给大家听听?

(3)观察这两个算式,你有什么发现?

引导学生比较两个算式异同点,并指名学生说一说自己

生:这两个算式的得数是一样的。

师:是的,虽然他们的格式不同,但他们的得数相同,所以我们可以用一个符号把这两个算式联系起来。

生:等于号

师:对,用等于号相连,表示这两个式子是相等的,一起读一读,认识这两种方法的结果是一样的,所以(35+25)×3=35×3+25×3

师:再和前面的一组式子一起观察,

9×(37+63)=9×37+9×63

(让学生通过读,感悟到左边是两个数的和乘一个数,右边的两个数的积加上两个数的积)

2、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出几个类似的例子来验证吗?(板书:举例)

(1)验证方法:要求每人出两组算式,数字随意举例,可以使用计算器进行计算,验证你举的例子是否相等。然后拿到小组内交流(学生小组合作交流,教师巡视指导。)

(2)学生回报:谁来说一说自己举的例子。

(3)同学们,请看一看这三个同学举的例子,每组的结果都是相同的,我们就可以用等号把它们连接起来。(板书)

(4)轻声读这些等式,你发现了什么?

3、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)从刚才的举例过程中,你能发现乘法运算中的规律吗?

学生回报。

(电脑出示:两个数的和与一个数相乘,可以用两个加数分别与这个数相乘,再把两个积相加,结果不变。这叫做乘法的分配律。)

同学们发现的这个知识规律,叫做乘法分配律。(板书:乘法分配律)

(3)如果用a、b、c分别表示三个数,你会用字母表示乘法分配律吗?

结合学生回答,教师板书:(a+b)×c=a×c+b×c

齐声读两遍。

(4)对于乘法分配律,用字母来表示,感觉怎样。

引导学生发现:字母表示的式子简洁、明了,这就体现了数学的美。

三、加强应用、深化理解

1、瞻前顾后填一填。

(10+7)×6=□×6+□×6

8×(125+9)=8×□+8×□

7×48+7×52=□×(□+□)

2、火眼金睛看一看:

判断下面算式是否正确?并说明理由?

56×(19+28)=56×19+28()

32×(7×3)=32×7+32×3()

25×12+12×75=12×(25+75)()

25×99+25=(99+1)×25()

3、利用乘法分配律,计算下列各题。(80+4)×2534×72+34×28师小结:通过这两道题的计算,我们可以看出,乘法分配律是互逆的。为了使计算简便,我们既可以从左边算式得到右边算式,又可以从右边算式得到左边算式。但遇到实际计算时,要因题而异。

4、找朋友

(10+6)×410×4+610×4+6×4

5×(7+9)5×7+5×95×7×9

3×25+7×253+7×25(3+7)×25

5、对口令

师:如果一个同学说出乘法分配律的左边部分,那你就说出它的右边部分,如果他说出的是右边部分,你就对出左边部分。看谁反应快。

6、脑筋急转弯。

猜一猜,等号后边是三个什么字?

木×(1+3+2)=?

四、总结:

1、回忆一下,这节课你学会了什么?

2、如果把乘法分配律中的加法改成减号,等式是否依然成立?根据乘法分配律,你能提出新的猜想吗?同学们课后交流一下,下节数学课我们再继续研究。

2022乘法分配律教学设计篇5

教学内容:

青岛版四年级下册第24-25页红点内容信息窗2第1课时

教学目标:

1.通过有步骤的观察、猜测、比较、概括,引导学生自己建构乘法分配律的全过程。

2.帮助学生理解乘法分配律的意义,掌握其数的特点和结构形式,并学会用字母表示乘法分配律。从而培养学生的分析观察能力,提高学生的抽象思维能力。

3.在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成探究问题的意识和习惯。

教学重点:

理解和掌握乘法分配律的推导过程。

教学难点:

理解和掌握乘法分配律的推导过程。

教学准备:

课件,卡片(课前发给学生)

教学过程:

一、拟定自学提纲

自主预习

1.创设情境:(多媒体出示24页情境图)

教师引导:同学们,请认真观察情境图,你能得到哪些数学信息?能提出什么数学问题?

(学生可能提出济青高速公路全长大约多少千米?

相遇时大巴车比中巴车多行多少千米?)

(教师把这两个问题板书在黑板上。)

教师引导:这节课,我们将通过研究一辆大巴车和一辆中巴车在济青高速上相遇的问题继续探索乘法运算的规律。

2.出示学习目标:

这节课的学习目标是:(多媒体出示)

(1)运用观察、猜想、验证、归纳的数学方法,通过自主解决上述问题,探索发现乘法分配律,会用自己的话表述,会用字母表示。

(2)乐于把自己学习的收获、困惑、体会与大家分享,乐于与同学合作。

教师引导:有信心达到这两个目标吗?(有!)

老师的指导会对你们的学习有很大的帮助,请看自学指导:

3.出示自学指导(认真看课本第24页到25页第二个红点前的内容,重点看图上同学的对话。

思考:

(1)如何求济青公路的全长,有几种解法,如何列式计算。

(2)比较两种解法的计算过程和结果,你有什么猜想?再举几个例子来验证一下,你能得出什么结论?

(3)什么叫乘法分配律,如何用字母表示?

5分钟后汇报自学成果,看谁能独立用多种方法解答黑板上的三个问题,并能发现乘法运算的规律。)

4.学生按自学指导自学,教师巡视,关注学困生。

二、汇报交流评价质疑

调查学情:看完的同学请举手!看会的请放下。

1.小组交流:

学习中你有哪些收获、困惑和体会,请在小组内交流一下。

2.班内汇报:

师指小组选代表按顺序汇报自学指导中的思考题,其余同学随机质疑、补充。

课堂生成预设:

(1)济青高速公路全长大约多少千米?

教师追问:第一种算法是先算什么,再算什么?第二种算法呢?

预设一:先算两辆车1小时共行多少千米,再算两辆车2小时共行多少千米,就是济青高速公路的全长;

预设二:先算大巴车2小时共行多少千米、中巴车2小时共行多少千米,再算两辆车2时共行多少千米。就是济青高速公路的全长。)

(2)相遇时大巴车比中巴车多行多少千米?

(110-90)×2110×2-90×2

=20×2=220-180

=40(千米)=40(千米)

教师追问:你能说说两种算式的意思么?

预设一:第一种算法是先求大巴车1小时比中巴车多行的路程,再求大巴车2小时比中巴车多行的路程;

预设二:第二种算法是先分别求出大巴车和中巴车2小时行的路程,再求大巴车比中巴车多行的路程。

(3)观察、比较两种算法的过程和结果,你有什么发现?

预设一:第一种算法是先加(或减)再乘;

预设二:第二种算法是先分别相乘再加(或减),但计算结果相同。

(4)据此,你有什么猜想?

预设:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

(5)怎样验证你的猜想呢?

(师用线段图帮助学生理清思路)

学生观察、汇报。重点引导学生从计算结果,算式的结构和计算方法上比较。

通过观察,有何发现?引导学生回答:

举例验证:(125+12)×8=125×8+12×8

(40-4)×25=40×25-4×25

(8+16)×125=8×125+16×125

(80-8)×125=80×125-8×125

(6)通过验证,你能得出什么结论?

结论:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

教师总结:这是一个伟大的发现!这个规律叫做乘法分配律。

(板书课题)你会用字母表示这个规律吗?

(用字母表示:(a±b)c=ac±bc)

三、抽象概括总结提升

1.通过以上研究,你得到了什么结论?

课堂预设:

预设一:两个数的和乘一个数,可以把它们分别乘这个数,再把所得的积相加,结果不变。

预设二:两个数的差乘一个数,可以把它们分别乘这个数,再把所得的积相减,结果不变。

预设三:两个数的和(或差)乘第三个数,等于这两个数分别乘第三个数,再把所得的积相加(或相减)。

预设四:这个规律叫乘法分配律,可以用字母表示为:

(a±b)c=ac±bc

2.如果是多个数的和(或差)乘一个数,这个规律还存在吗?你怎样验证你的猜想?

课堂预设:

举例验证:(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

教师总结:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

设计意图:将乘法分配律适当拓展

3.在记忆这个规律时,应该注意什么?

【设计意图】帮助学生理解、记忆乘法分配律,避免常犯的错误。

课堂预设:

预设一:括号里的每一个数都要乘括号外的数。

预设二:括号里的数必须是相加或相减,如果是相乘就不是乘法分配律。

预设三:这个规律还可以倒过来看。

教师追问:怎样倒过来看?

预设:几个数都乘同一个数,再相加或相减,可以先把它们相加或相减,所得的和或差再乘这个数,结果不变。

四、巩固应用拓展提高

教师引导:怎么样?学会了吗?想不想挑战一下自己?

1.考一考(课件出示第26页第2题)

(1)指4名学困生板演,其余同做在练习本上。

(2)展示不同答案:谁的答案和板演者不同?请到黑板前展示出来。

课堂预设:(以第一题为例)

(80+70)×5(80+70)×5

=80×70+70×5=80×5+70×5

2.议一议

(1)你认为谁的答案对,为什么?谁的答案不对,为什么?

(2)第一种答案是把括号里的两个加数相乘了,不符合乘法分配律,所以错了;第二种答案符合乘法分配律,所以是正确的。

(3)用同样的方法评议其余3题。

(4)同桌互改

(5)统计错题情况,让小组代表说说错误原因。

(6)学生各自订正错题。

3.全课小结:你在本节课中有什么收获?

课堂预设:

预设一:我知道了什么是乘法分配律。

预设二:我又体验了探索数学规律的一般方法——通过观察发现问题——提出猜想——举例验证——得出结论。

预设三:我感受到我们山东省的交通真是便利,作为山东人我感到自豪!

五、当堂训练

1.出示课本第26页第3题

2.《新课堂》第17到第19页信息窗2第1课时内容。

同学们,通过这节课的复习,你有什么收获?对自己的表现还满意吗?谈一谈你的感受。

板书设计

乘法的分配律

济青高速公路全长大约多少千米?相遇时大巴车比中巴车多行多少千米?

(110+90)×2=110×2+90×2(110-90)×2=110×2-90×2

验证:

(125+12)×8=125×8+12×8(40-4)×25=40×25-4×25

(8+16)×125=8×125+16×125(80-8)×125=80×125-8×125

结论:用字母表示:(a±b)c=ac±bc)

(2+3+5)×4=2×4+3×4+5×4

(1000+100+10)×3=1000×3+100×3+10×3

拓展:多个数的和(或差)乘一个数,可以把它们分别乘这个数,再把所得的积相加(或相减),结果不变。

使用说明:

1.教学反思:

乘法分配律是第二单元的教学难点也是重点。这节课的设计。我是从学生的生活问题入手,利用相遇问题展开。这节课我力图将教学生学会知识,变为指导学生会学知识。通过让学生经历了“观察、初步发现、举例验证、再观察、发现规律、概括归纳”这样一个知识形成的过程。回顾整个教学过程,这节课的亮点主要体现在以下几个方面:

(1)引入生活问题,激趣探究。在教学中,我为学生创设大量生动、具体、鲜活的生活情境,让学生感到数学就是从身边的生活中来的,激发学生学习的热情。首先我创设情景,提出问题:“一共有多少名学生参加这次植树活动?”让学生根据提供的条件,用不同的方法解决,从而发现(125+12)×8=125×8+12×8这个等式。然后请学生观察,这个等式两边的运算顺序,使学生初步感知“乘法分配律”。再让学生“观察这个等式左右两边的不同之处”,再次感知“乘法分配律”。同时利用情景,让学生充分的感知“乘法分配律”,为后来“乘法分配律”的探究提供了有力的保障。

(2)提供学生独立探究的机会。我要求学生观察得到的两个等式,提出“你有什么发现?”。此时学生对“乘法分配律”已有了自己的一点点感知,我马上要求学生模仿等式,自己再写几个类似的等式。使学生自己的模仿中,自然而然地完成猜测与验证,形成比较“模糊”的认识。

(3)为学生的学习方式的转变创设了条件。为了让“改变学生的学习方式,让学生进行探索性的学习”不是一句空话。在这节课上,我抓住学生的已有感知,立刻提出“观察这一组等式,你能发现其中的奥秘吗?”。这样,给学生提供了丰富的感知材料和具有挑战性的研究材料,提供猜测与验证,辨析与交流的空间,把学习的主动权力还给学生。学生的学习热情高了,自然激起了探究的火花。学生的学习方式不再是单一的、枯燥的,整个教学过程都采用了让学生观察思考、自主探究、合作交流的学习方式。我想:只有改变学习方式,才能提高学生发现问题、分析问题和解决问题的能力。

不足之处:

(1)本课堂我的教学程序是:先出示情景图,根据情景图上所给的信息列出算式:并且让学生说说这两个算式的含义,然后让学生读读这个算式(意图是让学生去感知乘法分配律),然后再让学生去写出两个类似的算式(意图是让学生体验乘法分配律)写完之后再板书几个同学所写的算式并选取期中一个同学的算式让他说说算式的左边为什么等于右边(110+90)×2=110×2+90×2);而且我还要求同学们用不同的方法来说(意图是让不同层次的同学们都能反复去感知乘法分配律),通过刚才的几道程序,然后再让同学们去总结这类算式左边和右边的特点,得出乘法分配律,最后通过练习巩固和加深同学们对乘法分配律的认识。原以为这样上会有一个比较好的效果,但是事与愿违,在要同学们独立写出两个类似的算式时,发现有小部分同学并不会写,所以本堂课后面部分上得就不怎么顺畅了。课后向老师请教得知,原来我的教学程序上出现问题了----违背了学生的认知规律,应该是先由老师引导学生总结出乘法分配律,再让学生写出类似的算式,体验乘法分配律,最后再通过练习巩固和加深学生对乘法分配律的认识。

(2)在要求同学们去总结出乘法分配律的概念时老师没有很好的引导,导致同学对乘法分配律特点的认识比较模糊。

(3)在学生总结出乘法分配律的概念时,我只是一笔带过的把乘法分配律通过课件再展示给学生们看了一遍,没有反复强调乘法分配律的特点,导致学生没有较好的掌握乘法分配律。

2.使用建议:

(1)教师在创设情境时一定要激发学生探索的愿望。学生在情境的引导下,主动实现对数学知识的认识和理解。

(2)在练习时采用小组活动是必须的,这样学生之间可以互帮互助,共同进步。激发学生的学习热情。练习时一定要给学生足够的讨论时间。

(3)订正汇报时,让学生之间相互评价。

3.急需解决的问题:如何使课堂更加实用高效?如何解决学生运用乘法分配律进行简便计算的“漏乘”问题?

2022乘法分配律教学设计篇6

教学内容

义务教育课程标准数学(人教版)四年级下册第36页例题3乘法分配律。

教材分析

本内容是乘法运算定律的最后一个内容,它是本单元的教学重点,也是本节课的教学难点。学生对该知识点的感性认识远远不够,且定律的叙述又比较繁琐。教材是按照提出“一共有多少名同学参加了植树”问题、列式解答、观察比较、总结规律等层次进行的。从例题3的知识点看主要是乘法分配律及用字母表示的2种情况,但从做一做中体现出了把乘法分配律从右往左运用的情况。通过课堂的学习,让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律,初步感受运用乘法分配律能进行一些简算。

学情分析

本课的教学内容是在学生已经学习掌握了乘法交换律、结合律,并能初步应用这些定律进行一些简便计算的基础上接着学习的,但本节内容对于学生来说是概况、归纳能力的一个薄弱环节,而乘法分配律又是学生以后进行简便计算的前提和依据,对提高计算能力有着重要的作用,故对本节课的教学设计要求更高。

教学目标

1、让学生经历发现归纳乘法分配律的过程,理解和掌握乘法分配律。

2、使学生感受数学与现实生活的联系,初步感受运用乘法分配律能进行一些简便运算。

3、培养学生自主参与意识和主动探究精神,同学间通过合作交流获得成功的体验。

教学重点

理解乘法分配律的意义。

教学难点

发现与归纳乘法分配律。

教学准备

课件习题卡

教学过程

一、结合实事创设情景,引入新课

1、课件出示干旱图片,使生感受到节约用水,从我做起,从现在做起!

2、课件出示问题(一):一号井5吨/小时、二号井10吨/小时,两口井一共出水多少吨?请生用不同的方法列出综合算式(师相机板书),说出算理并计算,发现两种方法表示的意义和结果相同,得出可以用“=”连接两个算式。接着请同学感受用那种方法计算更快?

3、课件出示问题(二):共有25个小组,每组4人挖坑、种树;2人抬水、浇树,一共有几名同学参加植树?请生用不同的方法列出综合算式(师相机板书),说出算理,猜测结果,计算验证得出结果相同,同样可以用“=”连接两个算式。请同学感受用那种方法计算更快?

二、合作交流,探索发现新知

1、引出课题。通过观察得出2个等式都是由3个数组合而成的,这样的等式有什么样的规律呢?这就是我们今天要探究的新知——乘法分配律。

板书:乘法分配律

2、发现和归纳乘法分配律

(1)请同学们观察这2个等式,等号左边、右边是怎么算的?请生算一算,把你的发现和同桌说一说好吗?

(2)请同学自己任意用三个数试着组成这样的算式,验证是否都具有这样的规律呢?

(3)生举例并展示,共同验证并读一读式子。

(3)具有这样特征的式子能举得完吗?讨论是否存在不符合这样规律的式子?

(4)同桌互相试着说一说规律,请生汇报,总结得出乘法分配律,请生打开书P36读一读。

3、用字母a、b、c表示这三个数,乘法分配律可以怎么表示呢?同学们敢接受挑战吗?4人小组讨论,请生汇报,说一说算式的意义并读一读。

三、小结

同学们,今天我们通过观察探索发现了乘法分配律,并用字母简洁的表示出来。下面同学们敢接受考验吗?

四、分层练习,逐级达标

1、填一填:习题卡第一题

巩固乘法分配律并使学生初步感受运用乘法分配律能进行一些简便运算。

学了乘法分配律有什么用呢?习题卡中的例题你会选择哪种方法呢?请生选择方法,说一说理由。

2、看一看:习题卡第二题

3、应用:请生完成书P38第7题。使学生感受学习乘法分配律的用处是使计算简便。

五、回顾课程,进行总结

同学们,今天这节课我们通过观察、分析学习了新的知识,你有什么收获呢?

2022乘法分配律教学设计篇7

教学目标

1、使学生理解乘法分配律的意义。

2、掌握乘法分配律的应用。

3、通过观察、分析、比较,培养学生的分析、推理和概括能力.教学重点:乘法分配律的应用。

教学难点:

乘法分配律的反应用.

教具:

教学课件一套

教学过程:

一、比赛激趣,提出猜想

(1)、同学们,学习新课前,我们先来一个小小的数学热身赛。请大家准备好纸和笔。(请看大屏幕,左边的两组同学做第一小题,右边的两组做第二小题,看谁做的又对又快,开始)

7×28+7×72

7×(28+72)

(2)、评出胜负。(做完的同学请举手,汇报计算过程。可以看出右边的`同学做得比较快,(问同学)你们有什么意见吗?这两道题有什么联系吗?)

这两道题运算顺序不同,但结果相同,可以用一个等式表示:

7×28+7×72=7×(28+72)

(3)命名猜想。

这位同学说的非常好,我们就先将他的这个发现命名为__猜想。(板书:猜想)

二、引导探究,发现规律。

1、我们下面就一起来验证一下这位同学的猜想在其它的题里是否也成立。

2、商场“五一”举行让利大折扣,王老师趁这机会去为参加校园歌手比赛的五位同学挑选服装,请看大屏幕:(出示情境图)

(1)看到这幅图画,你了解到了什么信息?你想提什么问题?

(2)你能用两种方法列出综合算式吗?

(3)学生独立列式,教师巡视

(4)交流反馈:你是怎么想的,怎样列式计算

板书:65×5+45×5(65+45)×5

(5)观察这两个算式,你有什么发现?

3、举例验证,进一步感受

认真观察屏幕上的这个等式,你还能举出含有这样规律的例子吗?(板书:举例)

把自己举出的例子在练习本上写一写,谁来说一说自己举的例子,我们一起来验证一下等号左右两边是否相等。(可举三个例子)轻声读这些等式,你发现了什么?

4、归纳总结,概括规律。

(1)现在谁能说一说这些等式有什么共同特点?(板书:总结)(运算顺序不同但结果相同)

(2)刚才我们用举例的方法验证了__猜想,在举例的过程中有没有发现与结果不一样的例子?能不能举一个这样的反例。

(3)看来这个规律是普遍存在的,__同学,恭喜你!你的猜想是正确的。这个规律在数学上叫做乘法分配律。(板书)

(4)像这样的等式写得完吗?你能用自己的方式把这些等式中存在的规律表示出来吗?请同学们先在小组里说一说。

反馈时引导学生用不同的方式表达。(学生可能用语言描述,可能用字母表示……)

用字母表示:〔a+b〕×c=a×c+b×c

用语言叙述:两个数的各乘第三个数,可以把这两个数分别和第三个数相乘,再求和。

(5)大屏幕出示关于乘法分配律的总结,学生齐读。

三、探索发展,应用规律。

(1)、我们发现了乘法分配律,那么它对我们的计算有什么帮助呢?(板书:应用)(学生举例说)

(2)对,应用乘法分配律可以使一些计算简便,请同桌合作研究下面这些题目怎样计算比较好?请看大屏幕:谁来读一下题。

(8+4)×2534×72+34×28

(完后让学生汇报计算方法,重点说这两题都应用了什么运算定律。)

四、巩固内化。

1、做“想想做做”第1题

学生独立填写,指名报,全班共同校对。

明确:根据什么这样填写?第1题和第2题在乘法分配律的应用上有什么不同的地方?

2、做“想想做做”第2题

学生自己判断。然后请生说说判断的依据。

3、做“想想做做”第3题

让每位学生都用两种方法计算长方形的周长,指名板演。

明确:这两种算法有什么联系?符合什么规律?

小结:通过长方形周长两种计算方法的比较,也说明了乘法分配律的合理性。另一方面也使我们看到,乘法分配律我们早已不自觉地在运用了。

4、做“想想做做”第4题

让学生各自按运算顺序计算,指定两人板演,共同订正。

提问:每组两道算式有什么联系?哪一题的计算比较简便?

小结:有时是先乘再求和比较简便,有时是先求两数的和再乘比较简便,大家要根据实际情况的不同,灵活对待。

五、总结回顾。

197320