教案模板

5U文学网 > 实用文 > 教学资料 > 教案模板 > 小数乘小数教学设计

小数乘小数教学设计

| 发昌

作为一名人民教师,时常会需要准备好教案,借助教案可以更好地组织教学活动。如何把教案做到重点突出呢?下面是由小编给大家带来的小数乘小数教学设计7篇,让我们一起来看看!

小数乘小数教学设计篇1

教学内容:P70页例7及“试一试和练一练”,练习十二2、3题。

教学目标:使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。

教学重点:正确运用计算法则计算小数乘小数的乘法

教学难点:理解小数乘小数的意义,掌握小数乘小数的计算法则

教学过程

一、复习

0.52+0.48=0.17+0.33=3.6+6.4=

0.8×3=3.7×5=46×0.3=

二、新授:

1、教学例7。

(1)出示例7

(2)从图中你知道了哪些信息?

(3)提问:如果要求小明房间的面积有多大?先估计一下。

3.8×3.2≈()(说一说估计的方法)

(4)提出:列竖式计算怎样算呢?

把这两个小数都看成整数,很快计结果。

相乘后怎样才能得到原来的积?

(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。

2、第65页试一试。

提出:要求阳台的面积是多少平方米?怎样列式?

计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)

强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68

3、小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)同桌讨论:说说小数乘小数应该怎样计算?

小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固练习

1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)

2、完成第65页练一练第2题(学生独立完成,集体校对)

3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)

4、完成练习十二第3题。(说说数量关系,再列式计算)

四、课堂小结:今天你学到了什么知识?

教学反思:

面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:

1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

2、列竖式细化。强调:

①小数乘法列竖式时“末位对齐”。

②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。

③对于计算结果,要先点小数点再划掉积末尾的0。

第七课时小数乘小数(二)

教学内容:P66页例8,“练一练”,练习十二第1、3、4、5题。

教学目标:使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。

教学重点:掌握确定积的小数位数时,位数不够时用“0”补足

教学难点:确定积里小数点的位置

教学准备:课件、展台

教学过程:

一、复习:出示练习十二第4题

根据第一栏的积,写出其他各栏的积(说说是怎样想的?)

二、教学例8。

出示例8。

(1)花架的占地面积是多少平方米?怎样列式?

指名回答,师板书算式。

(2)学生试做。

0.28

小数乘小数教学设计篇2

教学目标:

1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。

2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足.

3.培养学生运用迁移的数学思想解决新问题的能力。

教学重点:小数乘小数的计算方法。

教学难点:小数乘法中积的小数位数和小数点位置的确定。

教学过程:

一、课前热身

1、分享一个小数点的故事,让学生意识到小数点的重要性。

2、复习一个数分别乘0.1、0.01、0.001得多少,

结论:一个非0的数乘0.1相当于把原数缩小10倍,乘0.01相当于把原数缩小100倍乘0.001相当于把原数缩小1000倍。

3、复习口算乘法。

4、复习整数乘小数笔算乘法及计算方法。

二、类比迁移,情境展开教学例3。

.出示例题。

(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗,

(2)师:在计算需要多少千克油漆之前,需要先算出什么呢,

(3)板书(或用PPT演示):2.4×0.8,________

2.尝试计算。

(1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同,(两个因数都是小数。)

(2)师:我们上节课学习的小数乘整数是怎样计算的,那两个因数都是小数又怎么计算呢,

(3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢,如果能,应该怎样做?

(4)指名学生口答,教师适时板书学生的讨论结果。

3.理解算理。

引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。

4.进一步明确算理(两个因数的小数位数不同)。

(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢,

(2)板书:1.92×0.9,________

(3)师:这道题也可以先按整数乘法计算吗,积里的小数点应该点在哪里呢,

三、深化探究,总结算法

(一)探究因数与积的小数位数的关系。

1.学生独立完成第5页的“做一做”。

2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么,

(二)小结小数乘法的计算方法

1.组织学生回顾、讨论小数乘法是怎样计算的。

2.组织学生汇报、交流自己的计算方法。

(1)师:你是怎样计算的,(先按整数乘法算出积,再点小数点。)

(2)师:怎样确定积的小数点的位置,(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)

3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。

(三)、引发冲突,突破难点。

教学例4

1.出示例题。

(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗,

(2)板书(或用PPT演示):0.56×0.04,________

2.尝试计算。

(1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。

(2)师:在计算时,遇到了什么新问题,

(3)师:乘得的积的小数位数不够时,怎样点小数点呢,

(4)总结算理:乘、点、画、添

小数乘小数教学设计篇3

教学目标:

使学生理解小数乘小数的意义,掌握小数乘小数的计算法则,能正确运用计算法则计算小数乘小数的乘法,培养学生的合作能力和迁移类推能力。

教学重点:

正确运用计算法则计算小数乘小数的乘法

教学难点:

理解小数乘小数的意义,掌握小数乘小数的计算法则

教学过程

一、复习

0.52+0.48=0.17+0.33=3.6+6.4=

0.8×3=3.7×5=46×0.3=

二、新授:

1、教学例7。

(1)出示例7

(2)从图中你知道了哪些信息?

(3)提问:如果要求小明房间的面积有多大?先估计一下。

3.8×3.2≈()(说一说估计的方法)

(4)提出:列竖式计算怎样算呢?

把这两个小数都看成整数,很快计结果。

3.8×1038×3.2×10×32=7676

114÷100114=12.161216

相乘后怎样才能得到原来的积?

(4)讨论得出:两个因数分别乘10,积就扩大100倍,要想把积还原到原来,积就缩小100倍,要除以100。原来的积是12.16。

2、第65页试一试。

提出:要求阳台的面积是多少平方米?怎样列式?

计算3.2×1.15时,先把两个小数都看成整数,在积里应该怎样点上小数点?(学生尝试完成,展示学生作业)

强调:一个因数分别乘10,另一个因数乘100,积就扩大1000倍,要想把积还原到原来,积就缩小1000倍,要除以1000。原来的积是3.68

3、小数乘小数的计算法则。

(1)引导:把小数乘法转化成整数乘法来计算,两个因数与积的小数位数有什么联系?

(2)同桌讨论:说说小数乘小数应该怎样计算?

小结:小数乘法,先按整数乘法算出积,然后再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固练习

1、完成第65页练一练第1题(说说你是如何点出积中的小数点的)

2、完成第65页练一练第2题(学生独立完成,集体校对)

3、完成练习十二第2题(对的要打“√”,不能不打。不对的要打“×”,然后再订正)

4、完成练习十二第3题。(说说数量关系,再列式计算)

四、课堂小结:今天你学到了什么知识?

教学反思:

面对学生出现的错误,使我不得不重新审视自己的课堂,并对此进行深刻反思:通过分析,我决定从以下几方面加以改进:

1、将学生的错题作为教学资源进行分析、判断,这样的改错效果好于学生改书上的错题。

2、列竖式细化。

强调:

①小数乘法列竖式时“末位对齐”。

②求出积后,数两个因数一共有几位小数,就从积的右边起向左数出同样多的位数点上小数点。

③对于计算结果,要先点小数点再划掉积末尾的0。

第七课时小数乘小数(二)

教学内容:P66页例8,“练一练”,练习十二第1、3、4、5题。

教学目标:使学生初步掌握小数乘小数的意义和计算法则,使学生掌握确定积的小数位数时,位数不够时用“0”补足;培养学生的合作意识和推理能力。

教学重点:掌握确定积的小数位数时,位数不够时用“0”补足

教学难点:确定积里小数点的位置

教学准备:课件、展台

教学过程:

一、复习:出示练习十二第4题

根据第一栏的积,写出其他各栏的积(说说是怎样想的?)

二、教学例8。

出示例8。

(1)花架的占地面积是多少平方米?怎样列式?

指名回答,师板书算式。

(2)学生试做。

小数乘小数教学设计篇4

教学内容:

苏教版国标本五年级数学第86——87页例1、“试一试”、“练一练”、练习十五1——3题。

教学目标:

1、让学生通过主动探索,理解小数乘小数的计算方法,能正确地进行相关的计算。

2、让学生在主动探索的过程中,进一步增强探索数学知识规律的能力。

3、让学生进一步体会知识之间的内在联系,感受数学知识和方法的应用价值,从而激发学习数学的兴趣,提高学好数学的自信心。

教学过程:

一、情景导入,引入新课:

1、课件出示例1小明房间的平面图。

提问:从图中你可以得到哪些信息?想解决什么数学问题?

可以怎样列式?

根据学生的回答,出示以下问题:

(1)房间的面积有多大?

3.6×2.8

(2)阳台的面积有多大?

2.8×1.15

提问:这两道算式和我们以前学过的小数乘法有什么不同?

2、揭示并板书课题:小数乘小数。

二、合作探究,掌握算法。

1、初步探究小数乘小数的计算方法。

(1)估算初步探索:

师:请你先估计一下3.6×2.8的积大约是多少?

小组合作:先把自己的想法说给同桌听,再全班交流。

把3.6和2.8都看作3,3×3=9,面积在9平方米左右。

把3.6看作4,2.8看作3,4×3=12,面积应该比12平方米小一点。

……

(2)笔算进行探索。

师:通过刚才的估算,我们已经知道了3.62.8的积大概在9的左右。那么实际的结果是多少呢?我们还应该学会计算的方法。通常用列竖式的方法进行计算。

进一步启发:回想一下以前计算小数乘法的方法,我们是否可以先把这两个小数都看作整数来计算,这样你会做吗?

让学生先把这两个小数都看作整数来计算。

讨论:这样后,得到的积是不是原来的积?为什么不是?那主要的变化在哪里?

4人小组讨论,然后全班交流。

学生再阅读课本86页,进一步弄清课本的竖式图示的意思:

原来两个小数都当作整数相当于都乘了10,积是原来的100倍,只要把现在得到的积除以100,就能得到正确的积。

问:正确的结果与我们估算的结果接近吗?能正确估算结果的同学真棒。

2、进一步探究小数乘小数的计算方法。

教学“试一试”

(1)根据刚才你解决问题的方法,你能计算出2.8×1.15的结果吗?你能借87页上的示意图来说一说你的想法吗?

学生独立完成计算后与同桌交流想法。

(2)全班交流。把两个因数都看成整数,相当于这两个因数乘了1000,得到的积就是原来积的1000倍。要使现在的积等于原来的积,只要用3220除于1000。

问:现在的积可以化简吗?结果是多少?

三、概括推理,总结方法。

1、引导学生比较例题与“试一试”的计算过程。

观察例1中的因数和积,你发现了它们之间有什么关系?

再观察“试一试”中的因数和积,你发现了它们之间有什么关系?

你从中得到了什么启发?你能说一说因数与积之间有什么关系吗?

小结:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。

2、引导学生总结小数乘小数的计算方法。

师:现在你能总结出小数乘小数的计算方法了吗?

在小组里交流你的想法。

在全班里交流你的想法。

(1)先按整数乘法算出积是多少。

(2)再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

注意结果能化简的要化简。

四、实际练习,内化理解。

1、完成“练一练”第1题。

学生独立练习,小组交流校对。

2、完成“练一练”第2题。

独立练习,指名板演。集体评讲。

五、反思总结,深化提高。

今天我们应用了以前原有的知识,

通过主动积极的探索,得出了小数乘小数的计算方法。经过这个过程,你有什么体会和收获?还有什么值得探讨的地方?

六、完成书面作业:练习十五1、2、3题。

《小数乘小数》教学反思

说算理在我们计算的教学中是十分重视的。的确,说算理对于学生计算的方法的掌握,逻辑思维能力的培养具有积极的作用。然而搞形式化说理,忽视学生对算理的感悟,则有害而无益,形式化说理,表面上看似乎有理有据,推理严密,但它不是建立在学生对计算过程和方法感悟的基础上进行,因而难以使学生对算理真正内化,难以使学生理解实现对所学知识的“意义建构”。

在现行的教学中,一般是按教材的编排,采取如下方式引导学生理解小数乘法的计算方法。

1、出示算式13.5×0.5

2、引导学生观察和以前算式有什么不同。

3、讲算理:即13.5→扩大10倍→135×0.5→扩大10倍→567.5→缩小100倍→675

然而教学效果令人十分失望。当我引导完上述的转化过程时,要求学生说说为什么这样计算,大部分学生看着板书也说得清算理。但计算时,根本未按算理去做,尤其是中差生错误百出。课后我做了认真反思,上述推算我是严格按教材设计意图、教案要求,且很有条理去教学的,为什么还是没有真正理解算理呢?那是因为教材的推算过程是为教者和学者提供一种借鉴的思路。在实际教学中不能照搬照抄,更不能把教材的思路用教师所谓的“启发”灌输给学生,否则推算说理就成为了形式。为此,我就尝试了一种自己的教法,引导学生利用已有的知识经验自主探索,在经历感悟的过程中增强对算理和算法的理解。结果按我设计的教学方法学,班级学生不仅计算方法掌握快,算理也说的非常清楚,教学效果十分令人满意。

小数乘小数教学设计篇5

教学目标:

1、结合具体的事物,经历自主探索小数乘小数的计算方法的过程。

2、理解小数乘小数的计算方法,会笔算简单的小数乘小数的乘法。

3、积极参与数学活动,获得借助计算器和运用自己的知识解决问题的成功体验。

教学过程

一、问题情境

师生谈话,由介绍自己家的房间面积谈起,引出聪聪家客厅面积的问题。教师口述出示相关信息并板书。

师:同学们,我们的身边有许多数学问题,我想了解一下,哪位同学知道自己小房间长和宽大约是多少,面积有多大?

学生发言,教师对注意观察生活的学生给予表扬。

师:我们先来算一算聪聪家客厅面积的问题。聪聪家客厅长4.8米,宽3.6米。

教师板书:

长4.8米 宽3.6米

二、解决问题

1、客厅面积。

(1)提出问题(1),师生共同列出乘法算式。引导学生观察算式中的因数的特点。

师:要求“聪聪家客厅的面积有多少平方米”怎样列式?

学生说算式,教师板书:

4.8×3.6=

师:观察算式中的因数,你发现了什么?

生:算式中两个因数都是小数。

生:两个因数都是一位小数。

师:观察的很仔细,今天我们就来研究小数乘小数的计算方法。

板书课题:小数乘小数

(2)提出估算的要求,让学生说一说自己是怎样想的。学生方法只要合理,就予以肯定。

师:请同学们先估算一下,聪聪家客厅的面积大约是多少。

给学生一点思考、估算的时间。

师:谁来说一说,你是怎样估算的?结果是多少?

学生可能出现以下方法:

(1)把4.8看成5,把3.6看成4.5×4=20,所以客厅面积不到20平方米。

(2)把4.8看成5,把3.6看成3.5,5×3.5=17.5,所以,聪聪家客厅的面积大约是17.5平方米。

(3)把4.8看成4,把3.6看成3.4×3=12,聪聪家客厅的面积一定在12平方米以上。

(3)提出用竖式计算的要求,讨论:两个因数都是一位小数怎么办?用整数相乘的方法算出48×36的积以后怎么办?让学生充分发表自己的想法。

师:聪聪家客厅的面积不到20平方米。那么,到底是多少平方米呢?我们运用竖式计算一下。

教师板书竖式:

师:同学们,大家已经会用竖式计算小数乘整数了,这个算式中两个因数都是一位小数,怎么办?

生:4.8扩大10倍是48,3.6扩大10倍是36,先算48×36。

生:把两个因数分别扩大10倍,变成48×36。

师:把两个因数分别扩大10倍,变成48和36。

教师板书:

师:用整数相乘的方法算出48乘36的积以后怎么办?

学生可能出现不同意见。如:

生:把积缩小100倍。

生:把积缩小10倍。

如果出现不同意见,教师进行指导。使学生了解,两个因数分别扩大10倍,就等于这两个因数的积扩大100倍。

即: 4.8×10×3.6×10=4.8×3.6×100

(4)先讨论怎样计算,再师生共同完成竖式计算。重点讨论怎样确定小数点的位置。

师:谁来说一说,4.8×3.6怎样用竖式计算?

生:把4.8看作48,把3.6看作36,用整数乘整数的方法算出48乘36的积,再把积缩小100倍。

师:好!请同学们说,我来写,我们共同完成竖式计算。

教师随着学生的回答,板书:

师:按整数相乘得出1728后,怎么办?

生:把1728缩小100倍。

生:从1728右边开始数出两位点上小数点。

教师完成板书:

2、沙发占地面积。

(1)让学生读问题(2),并观察沙发图,了解其中的信息和要解决的问题,写出算式,并讨论算式中两个因数的特点。

师:通过计算,我们知道了客厅的占地面积是17.28平方米,聪聪家客厅中摆放着一个沙发,请看18页的沙发图,并认真读一读文字,说说你了解到哪些信息,要解决的问题是什么?

生:沙发的长是1.8米,宽是0.85米。

生:问题是沙发占地多少平方米?

师:求沙发占地多少平方米?怎样列式?

学生可能说出不同的算式,教师肯定并板书。

0.85×1.8

师:同学们看一看这个算式的两个因数,你发现了什么?

生:这个算式中的两个因数都是小数。

生:两个因数一个是一位小数,一个是两位小数。

(2)提出:“怎样用竖式计算”的问题,进行讨论,然后师生共同完成,竖式计算。在横式中写得数时,告诉学生,根据分数的基本性质,小数末尾的0可以不写。

师:这样的两个小数相乘,用竖式计算怎样算呢?

教师板书竖式:

生1:1.8扩大10倍是18,0.85扩大1000倍是85,先算出18乘85的.积,再把这个积缩小1000倍。

生2:先按整数相乘的方法计算85×18,再把积缩小1000倍。

学生说的只要合理就给予肯定。

师:好!就按大家说的方法,我们一起算一算。大家说,我来写。

学生说,教师板书。

师:按整数相乘的方法算出85×18等于1530后,怎么办?

生1:把1530缩小1000倍,在1的后面点上小数点。

生2:从1530的右边开始数出三位,在前面点上小数点。

教师在竖式中点上小数点。

师:大家看今天算出的这个小数积比较特殊,小数的末位是0,根据小数的基本性质,在横式写得数时,小数末尾的0可以不写。

完成横式:

0.85×1、8=1.53(平方米)

(3)让学生用计算器检验,得到确定答案。

师:用竖式算的对不对呢?请同学们用计算器检验一下。

学生计算交流。

三、归纳总结

让学生观察两个竖式,说一说因数和积的小数位数有什么关系,使学生了解:两个因数一共有几位小数,积就有几位小数。再师生共同总结归纳小数乘小数的计算方法。

师:观察两个竖式中的因数和积,你发现它们的小数位数有什么关系?

生:小数乘小数,两个小数一共有几位小数,积里面就有几位小数。

生:积的小数位数就是两个因数小数位数的和。

师:观察的很认真。知道了两个因数和积中小数位数的这种关系,在计算小数乘法时,不计算,我们就能判断积的小数位数。谁能说一说小数乘小数的计算方法?

生1:按照整数乘法的计算方法算出积。

生2:看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

最后,教师完整的口述小数乘小数的笔算方法。

师:小数乘小数,先按照整数乘法的法则算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

四、尝试应用

1、提出问题(3),让学生自己读题并观察茶几图,了解信息和要解决的问题,列出算式,先估计积有几位小数,再用竖式计算。

师:请同学们看19页第(3)题中的图及文字,说说你知道了哪些信息,问题是什么?

生:茶几的长是0.9米,宽是0.45米,要求茶几的面大约是多少平方米。

师:怎么列式?

学生说,教师板书:

0.45×0.9=

师:估计一下,0.45×0.9的积有几位小数?为什么?

生:三位。因为两个因数一共有三位小数,所以它们的积也一定是三位小数。

师:请同学们试着用竖式计算。

学生自主笔算,教师巡视,个别指导。请一名好学生板演。

2、订正学生计算的结果,重点说一说怎样确定积中小数点的位置。

师:谁和板演的结果不一样?

如果学生出现小数点点错的,就结合错题进行指导。如果没有,请板演的同学说一说确定小数点时是怎样想的。如:

生:先用整数相乘的方法算出45×9等于405。因为两个因数一共有三位小数,所以,也要从405的右边开始数出三位,405正好是三位,就在4的前面点上小数点,整数部分写0。

3、“试一试”,先让学生说一说怎样确定小数点的位置,再自己试写。交流时,让学生说一说怎样想的。

师:下面我们一起来看“试一试”,根据126×12=1512,直接写出下面各题的积。你知道怎样确定小数点的位置吗?

生:看两个因数一共有几位小数。

五、课堂练习

1、“练一练”的第1题。让学生先判断积有几位小数,再计算,最后全班交流。

师:请看“练一练”第1题,判断一下,积有几位小数。

指名回答。

师:请同学们在练习本上计算。

学生自主计算,教师巡视,注意帮助学习有困难的学生。

2、“练一练”的第2题,先引导学生弄懂题意,再独立完成。

师:请同学们读一读第2题,说说你从中了解到了哪些信息?

学生说出“大门和侧门的宽度和高度”的信息。

师:学校大门和侧门的面积各是多少?请同学们算一算。

小数乘小数教学设计篇6

教学内容:

第4、5页,例3、例4;第7、8页,练习一第4-6题。

教学目标

1、引导学生自主探索并总结小数乘法的计算方法,能对其中的算理做出合理的解释。

2、能正确笔算小数乘小数,提高计算的速度和正确率。

3、培养和发展学生的观察、概括能力。

教学重点:引导学生自主探索并总结小数乘法的计算方法。

教学难点:乘得的积的小数位数不够时小数点的定位问题。

教学准备:PPT

教学过程

一、复习导入

1、组织学生列竖式计算下面各题。

0.86×73.5×16

(1)学生独立计算,指名两生板演。

(2)反馈,校对答案,并请学生说一说计算方法和算理。

2、揭示课题:继续学习小数乘法。

【设计意图:通过复习激活学生的原有认知,教师应重点引导学生清晰阐述小数乘整数的算法和算理,为探索小数乘小数的算法和算理做好铺垫。】

二、探索新知

1、投影呈现例3主题图。

(1)引导学生独立审题后指名列式:1.2×0.8。

(2)请学生估一估1.2×0.8的积。

(教学预设:1.2×0.8≈1×1=1(平方米))

(3)提出问题:1.2×0.8的积到底是多少?两个因数都是小数怎么计算呢?

学生自主探索计算方法。

(4)指名三位学生板书不同的计算方法,

(教学预设三种可能如下:)

生1:1.2米=12分米

0.8米=8分米

12×8=96平方分米=0.96平方米

生2:1.2生3:1.2

×0.8×0.8

9.60.96

(5)组织学生思考、讨论以下问题:

①积是9.6还是0.96,为什么?

在澄清错误的过程中,引导学生学会阐述小数乘小数的算法和算理,形成如下的完整板书。

②观察并思考生1和生3方法指间的内在联系,揭示这两种方法都体现了把未知转化为已知的数学思想方法,外显形式不同,数学本质是相同的。

(6)引导学生观察竖式,讨论以下问题:

①因数和积的小数位数有什么关系?引导学生初步发现规律。

②比较积和两个因数的大小关系,发现0.96比因数1.2小,比因数0.8大。

2.基本练习:教材第4页做一做。

6.7×0.32.4×6.20.56×0.04

(1)观察并判断:积与两个因数的大小关系。如:6.7×0.3的积比6.7小,比0.3大;2.4×6.2的积比2.4和6.2的都大;0.56×0.04的积比0.56和0.04都小。

(2)学生独立完成,指名几位学生板演。

教师应注意收集学生在计算过程中出现的错误0.56

特别是计算0.56×0.04时,学生可能出现如右错误×0.04

0.224

(3)校对答案,并指名说一说算法和算理,重点讨论:0.56×0.04的积到底是0.224还是0.0224?乘得的积的小数位数不够,怎样点小数点?

3.总结小数乘法的计算方法。

(1)引导学生观察板书并思考:这些小数乘法是怎样计算的?

(2)组织四人小组进行组内交流。

(3)全班交流,总结小数乘法的计算方法:先按整数乘法算出面积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。

三、巩固应用

1.完成教材第5页做一做。

3.7×4.60.29×0.076.5×8.4

(1)先引导学生判断“积是几位小数”,其中6.5×8.4的积是不是两位小数可能会有争议,教师不要急于下结论。

(2)独立计算。

(3)投影反馈,重点是第3小题。

6.5×8.4

260

520

54.60

引导学生讨论两个问题:

①当乘积末尾有0时,是先撇去0再点小数点,还是先点小数点再撇去0?

②6.5×8.4的积为什么变成一位小数?

2.不计算,判断积的小数部分有几位。

47×0.05()6.9×0.38()

4.2×1.8()4.08×0.08()

0.9×0.7()6×0.07()

3.独立完成教材第7页练习一第4题,反馈时选择其中三个算式说一说想法。

四、课堂总结

请学生再次说一说小数乘法的计算方法和计算时需要注意的地方。

五、作业

《作业本》第2页。

小数乘小数教学设计篇7

教学目标:

1.通过自主探究, 使学生理解并掌握小数乘小数的方法,能正确计算相应的式题.

2.学生在探索计算方法的过程中,培养初步的推理能力以及抽象、概括能力.

3.通过学习使学生进一步体会数学知识之间的内在联系,感受数学探索活动本身的乐趣,增强学好数学的信心.

教学重难点:掌握小数乘小数的方法,会熟练的进行笔算,并能解决实际问题。掌握小数末尾的0的处理方法。

教学准备:多媒体课件

教学过程:

一.情境导入

1、师:小明家最近搬进了风景优美的月馨小区。(课件出示) 瞧!这是小明房间的平面图,从图中你能获得哪些数学信息?

2、师:根据这些数学信息,你能提出什么数学问题呢?

3、 师:同学们提出了很多有价值的问题。我们先来解决“房间的面积有多大?”你会列式吗?(生答)

4、 师:(板书:3.6×2.8)这道算式和我们以前学习的小数乘法有什么不同?(前面学习的是小数乘整数,而这道算式的两个因数都是小数)

5、师:今天我们就来探讨“小数乘小数的计算方法”。板书课题:小数乘小数

二、合作交流

(一) 例题引导,探究算法

1、师:你估计小明房间的面积大约是多少平方米吗?

怎样估的?(房间的面积在什么范围内?)

2、师:小明的房间究竟有多大呢?拿出导学案,小组内交流一下,你是如何运用前面的知识、方法求得3.6×2.8的积的。

a、谁来说说你的做法?

(尽可能让学生多说一些方法)

b、老师发现已有不少同学采用了竖式计算,谁上黑板来写一写。(学生书写竖式)(如果有小数点点错的,也板书上去)

师:你能告诉大家你是把小数乘小数的问题变成什么来计算的呢?你是受什么启发想到这样做的呢?

(生:由小数乘整数的计算方法想到的)

师:真会思考。(表扬)

师:那他计算的结果对不呢吗?(我们刚才估的是 ),刚才还有同学告诉我说自己是用计算器算的,那他的结果与你用计算器算的一样吗?

3、师:刚才我们从小数乘整数的算法联想到小数乘小数。结果为什么是10.08而不是100.8或1.008呢?

思考并交流:导学案合作交流问题3。

全班交流问题3(呈现幻灯片:把3.6×2.8都看成整数,这两个因数发生了什么变化?36×28的结果和3.6×2.8的结果之间到底有什么关系?为什么?)

(重点交流:积发生了什么变化?要由36×28的结果得到3.6×2.8的结果,应该怎么办?一个数除以100,只要 )

指向:积由原来的整数变成了两位小数。所以是10.08。

(教师小结:两个因数都乘10后,得到的数就等于原来的积乘100,要求原来的积,就要反过来把1008除以100,从右边起数出两位点上小数点。所以3.6×2.8的积是两位小数。)

通过推理,我们再次证实了3.6×2.8=10.08,(一起答)

4、补充答语。

(二)、教学“试一试”,强化算理的理解。

1、提出问题:小明还有一个明亮的阳台,它的面积又是多少平方米呢??谁说说列式?

(2.8×1.15),

2、师:考虑一下,你会怎样写这个竖式?为什么?

(1.15写在上面,2.8写在下面)

生:因为我们是把1.15和2.8都看成整数来计算的,所以三位数写在上面,两位数写在下面更简便。

3、师:对了,我们要学会选择合理的算法。知道怎么做吗?好,打开课本,把你的思考过程在书上填一填。

a. 交流:谁来说说是怎样得到1.15乘2.8的积的?

b. 追问:115乘28得到3220后怎么得到1.15乘2.8的积呢?(除以1000)为什么?(学生把理说得很清晰就不追问)

引导学生表达:把两个因数都看成整数,等于把一个因数乘100,另一个因数乘10,所以得到的积就等于原来的积乘1000,要得到原来的积,就要用3220除以1000。

c. 到此结束了吗?还需( )。根据是什么?

d. 在这里是先点上小数点还是先简化?为什么?

4、你能跟你的同桌说说下面两题该怎么计算吗?(同桌交流:不计算,只说想法)(汇报想法。)

4.27×2.6 = 6.3×4.2=

(三)寻找规律,概括算法

1、师:我们刚才都是把小数看成整数来计算,然后再根据积的变化规律把整数的积还原成小数的积。如果每题都这样去想是不是很麻烦?这当中有没有什么规律可寻呢?

2、提出问题a、观察上述各题的两个因数分别是几位小数,积是几位小数?

b 、通过比较,你发现积的小数位数与因数的小数位数有什么关系?

(幻灯片呈现:两个因数一共有几位小数,积就有几位小数。)

师:小数乘整数符合这个规律吗?

3、师:发现了这个规律,你是否感觉到小数乘小数变得太简单了?

4、小数乘小数应该如何计算呢?(把你的想法在小组内交流)

(生说)(幻灯片呈现)

交流:先干什么?(按整数乘法算出积)再干什么?(给积点上小数点)如何确定小数点的位置?(看因数中一共有几位小数,就从积的右边起数出几位,点上小数点)积的末尾有0怎么办?(先点小数点,在把0去掉)

(简单点说就是:一算 二数 三点点 四化简)

三.巩固提升:

1、你能给下面两题的积点上小数点吗?

①指名口答

②小数点为什么点在这里?

2、下面我们再来看看这两位同学点的小数点。先看对不对?然后改正,并思考其错误的原因可能是什么?

3、师:同学们的思考非常积极,计算题我们不光要知道怎么做,还要把它做对。

(在导学案上完成用竖式计算) (看谁做得又快又对)(讲评:突出横式写答案)

4、师:今天同学们的表现都非常棒。小数乘小数在生活中也有着广泛的应用。

(呈现幻灯片)一种西服面料,每米的售价58.5元,买这样的面料5.2米,应付多少元?(先估计得数,再计算)

①看题目。

②谁来说说你怎么估的。

③结果是不是300元左右呢?在导学案上列式解答。

④指名一人口答。58.5×5.2=304.2(元)(呈现)

四、思维拓展:

过渡:接下来,老师还想看看谁的反应快。快速抢答,直接说出下面各题的积。(准备)(第一题)

1、根据148×23=3404,直接说出下面各题的积。

14.8×2.3= 1.48×2.3= 14.8×0.23=

过渡:同学们今天注意力比较集中,所以思维都很敏捷。做事就应该这样。老师这里还有一题。

2、根据156×27=4212,你能在括号内填上适当的数,使等式成立吗?

( )×( )=4.212

(看谁想到的答案多)

五、回顾反思:这节你有什么收获?还有哪些疑问?

六、当堂检测:

1、在算式6.29×3.2中,如果两个因数同时扩大10倍,积就扩大( )倍;如果一个因数扩大10倍,另一个因数缩小10倍,积( )。

2、在计算2.17×1.2时,可以先看作( )×( ),它的积是( )。因为两个因数共有( )位小数,所以2.17×1.2的积也是( )位小数,也就是( )。

3、计算。 9.8×0.3= 41.4×2.5= 0.03×67.5=

小数乘小数,它是在学生学习了小数乘整数的基础上进行教学的。在整个过程中,我放手让学生充分运用已有知识自己去探索,凭学生自己的理解来寻找解决新问题的方法。

(1)独立尝试。学生在独立计算2.8×3.6时,势必会根据对前面小数乘以整数的算法和算理的理解来进行计算,这一尝试可充分暴露学生的思维过程,我充分了解学生计算小数乘以小数时在认知上的难点,为接下来有针对性、有重点的教学找准了最佳的切入口。

(2)交流各自的算法与想法。在交流中,我让不同层次的学生畅谈自己的算法与想法。如在计算小数乘小数的过程中,我首先让学生估算2.8×3.6的结果最大是多少,最小是多少,然后让学生再进行计算,来判断自己的计算是否正确。

我充分尊重学生,让尽可能多的学生创造性地参与到计算的探索过程中来,对学生的各种不同的算法与想法展示给全班学生,让学生进一步感悟算理,获得方法。最后通过比较小数乘法,学生明白了:先按整数乘法的计算方法得出积,再看两个因数中一共有几位小数,就从积的右边起数出几位,点上小数点。通过试一试让学生明白先点小数点再化简。我本人认为很简单,但学生在做题中出现的错误较多:

1)由于马虎出现计算性错误。

2)两个因数中,第二个是中间有零的,学生计算时特别容易把数位对错。

3)在计算结果中把积的小数位数数错,导致小数点的位置点错。我让同学自己找找原因,先想想小数乘法的计算方法,然后再跟错题比较一下,这时候有的同学能自己找出错题的原因,这样才能给学生留下深刻的印象,以至下次做题时不会再犯相同的错误。我想在课上这样强调,会大大减少学生的出错。

196204